Mathematical Models in Contact Mechanics

¡
¡ London Mathematical Society Lecture Note Series āĻŦāχ 398 ¡ Cambridge University Press
āχ-āĻŦ⧁āĻ•
295
āĻĒ⧃āĻˇā§āĻ āĻž
āϰ⧇āϟāĻŋāĻ‚ āĻ“ āϰāĻŋāĻ­āĻŋāω āϝāĻžāϚāĻžāχ āĻ•āϰāĻž āĻšā§ŸāύāĻŋ  āφāϰāĻ“ āϜāĻžāύ⧁āύ

āĻāχ āχ-āĻŦ⧁āϕ⧇āϰ āĻŦāĻŋāĻˇā§Ÿā§‡

This text provides a complete introduction to the theory of variational inequalities with emphasis on contact mechanics. It covers existence, uniqueness and convergence results for variational inequalities, including the modelling and variational analysis of specific frictional contact problems with elastic, viscoelastic and viscoplastic materials. New models of contact are presented, including contact of piezoelectric materials. Particular attention is paid to the study of history-dependent quasivariational inequalities and to their applications in the study of contact problems with unilateral constraints. The book fully illustrates the cross-fertilisation between modelling and applications on the one hand and nonlinear mathematical analysis on the other. Indeed, the reader will gain an understanding of how new and nonstandard models in contact mechanics lead to new types of variational inequalities and, conversely, how abstract results concerning variational inequalities can be applied to prove the unique solvability of the corresponding contact problems.

āϞ⧇āĻ–āĻ• āϏāĻŽā§āĻĒāĻ°ā§āϕ⧇

Mircia Sofonea is Full Professor of Applied Mathematics at the University of Perpignan (France), Director of the Laboratory of Mathematics and Physics (LAMPS) at the same university and Member of Honour of the Institute of Mathematics of the Romanian Academy of Sciences.

Andaluzia Matei is Professor of Mathematics at the University of Craiova (Romania).

āχ-āĻŦ⧁āϕ⧇ āϰ⧇āϟāĻŋāĻ‚ āĻĻāĻŋāύ

āφāĻĒāύāĻžāϰ āĻŽāϤāĻžāĻŽāϤ āϜāĻžāύāĻžāύāĨ¤

āĻĒāĻ āύ āϤāĻĨā§āϝ

āĻ¸ā§āĻŽāĻžāĻ°ā§āϟāĻĢā§‹āύ āĻāĻŦāĻ‚ āĻŸā§āϝāĻžāĻŦāϞ⧇āϟ
Android āĻāĻŦāĻ‚ iPad/iPhone āĻāϰ āϜāĻ¨ā§āϝ Google Play āĻŦāχ āĻ…ā§āϝāĻžāĻĒ āχāύāĻ¸ā§āϟāϞ āĻ•āϰ⧁āύāĨ¤ āĻāϟāĻŋ āφāĻĒāύāĻžāϰ āĻ…ā§āϝāĻžāĻ•āĻžāωāĻ¨ā§āĻŸā§‡āϰ āϏāĻžāĻĨ⧇ āĻ…āĻŸā§‹āĻŽā§‡āϟāĻŋāĻ• āϏāĻŋāĻ™ā§āĻ• āĻšā§Ÿ āĻ“ āφāĻĒāύāĻŋ āĻ…āύāϞāĻžāχāύ āĻŦāĻž āĻ…āĻĢāϞāĻžāχāύ āϝāĻžāχ āĻĨāĻžāϕ⧁āύ āύāĻž āϕ⧇āύ āφāĻĒāύāĻžāϕ⧇ āĻĒ⧜āϤ⧇ āĻĻā§‡ā§ŸāĨ¤
āĻ˛ā§āϝāĻžāĻĒāϟāĻĒ āĻ“ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ
Google Play āĻĨ⧇āϕ⧇ āϕ⧇āύāĻž āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āĻ• āφāĻĒāύāĻŋ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ⧇āϰ āĻ“ā§Ÿā§‡āĻŦ āĻŦā§āϰāĻžāωāϜāĻžāϰ⧇ āĻļ⧁āύāϤ⧇ āĻĒāĻžāϰ⧇āύāĨ¤
eReader āĻāĻŦāĻ‚ āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āĻĄāĻŋāĻ­āĻžāχāϏ
Kobo eReaders-āĻāϰ āĻŽāϤ⧋ e-ink āĻĄāĻŋāĻ­āĻžāχāϏ⧇ āĻĒāĻĄāĻŧāϤ⧇, āφāĻĒāύāĻžāϕ⧇ āĻāĻ•āϟāĻŋ āĻĢāĻžāχāϞ āĻĄāĻžāωāύāϞ⧋āĻĄ āĻ“ āφāĻĒāύāĻžāϰ āĻĄāĻŋāĻ­āĻžāχāϏ⧇ āĻŸā§āϰāĻžāĻ¨ā§āϏāĻĢāĻžāϰ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤ āĻŦā§āϝāĻŦāĻšāĻžāϰāĻ•āĻžāϰ⧀āϰ āωāĻĻā§āĻĻ⧇āĻļā§āϝ⧇ āϤ⧈āϰāĻŋ āϏāĻšāĻžā§ŸāϤāĻž āϕ⧇āĻ¨ā§āĻĻā§āϰāϤ⧇ āĻĻ⧇āĻ“ā§ŸāĻž āύāĻŋāĻ°ā§āĻĻ⧇āĻļāĻžāĻŦāϞ⧀ āĻ…āύ⧁āϏāϰāĻŖ āĻ•āϰ⧇ āϝ⧇āϏāĻŦ eReader-āĻ āĻĢāĻžāχāϞ āĻĒāĻĄāĻŧāĻž āϝāĻžāĻŦ⧇ āϏ⧇āĻ–āĻžāύ⧇ āĻŸā§āϰāĻžāĻ¨ā§āϏāĻĢāĻžāϰ āĻ•āϰ⧁āύāĨ¤