Machine Learning in Aquaculture: Hunger Classification of Lates calcarifer

· Springer Nature
Sách điện tử
60
Trang
Điểm xếp hạng và bài đánh giá chưa được xác minh  Tìm hiểu thêm

Giới thiệu về sách điện tử này

This book highlights the fundamental association between aquaculture and engineering in classifying fish hunger behaviour by means of machine learning techniques. Understanding the underlying factors that affect fish growth is essential, since they have implications for higher productivity in fish farms. Computer vision and machine learning techniques make it possible to quantify the subjective perception of hunger behaviour and so allow food to be provided as necessary. The book analyses the conceptual framework of motion tracking, feeding schedule and prediction classifiers in order to classify the hunger state, and proposes a system comprising an automated feeder system, image-processing module, as well as machine learning classifiers. Furthermore, the system substitutes conventional, complex modelling techniques with a robust, artificial intelligence approach. The findings presented are of interest to researchers, fish farmers, and aquaculture technologist wanting to gain insights into the productivity of fish and fish behaviour.

Giới thiệu tác giả

Mr. Mohd Azraai Mohd Razman graduated his first degree from the University of Sheffield, United Kingdom, in Mechatronics Engineering in 2010. He then obtained his M.Eng. by 2014 from Universiti Malaysia Pahang (UMP) in Mechatronics Engineering and currently pursuing his Ph.D. at UMP as well. He did his visiting Ph.D. at University of Padova, Italy, in 2018 where he focuses on computer vision and machine learning. His research interests include optimization techniques, control systems, signal processing, instrumentation in aquaculture, sports engineering, as well as machine learning.

Dr. Anwar P.P. Abdul Majeed graduated with a first-class honours B.Eng. in Mechanical Engineering from Universiti Teknologi MARA (UiTM), Malaysia. He obtained an M.Sc. in Nuclear Engineering from Imperial College London, United Kingdom. He then received his Ph.D. in Rehabilitation Robotics under the supervision of Prof. Dr. Zahari Taha from Universiti Malaysia Pahang (UMP). He is currently serving as a senior lecturer at the Faculty of Manufacturing and Mechatronics Engineering Technology, UMP. He is an active research member at the Innovative Manufacturing, Mechatronics and Sports Laboratory, UMP. His research interests include rehabilitation robotics, computational mechanics, applied mechanics, sports engineering, renewable and nuclear energy, sports performance analysis, as well as machine learning.

Dr Rabiu Muazu Musa holds a Ph.D. degree from Universiti Sultan Zainal Abidin (UniSZA), Malaysia. He obtained his M.Sc. in Sports Science from UniSZA in 2015 and his B.Sc. in Physical and Health Education at Bayero University, Kano, Nigeria, in 2011. His Ph.D. research focuses on the development of multivariate and machine learning models for athletic performance. His research interests include performance analysis, health promotion, sports psychology, exercise science, talent identification, test, and measurement, as well as machine learning. He iscurrently a lecturer at the Centre for Fundamental and Liberal Education, Universiti Malaysia Terengganu.

Dr. Zahari Taha graduated with a B.Sc. in Aeronautical Engineering with Honours from the University of Bath, United Kingdom. He obtained his Ph.D. in Dynamics and Control of Robots from the University of Wales Institute of Science and Technology in 1987. He is the founder and advisor of the Innovative Manufacturing, Mechatronics and Sports Laboratory (IMAMS), UMP, and formerly a Professor at the Faculty of Engineering, Universiti Malaya, and Faculty of Manufacturing Engineering, UMP. Dr Zahari teaches and conducts research in the areas of industrial automation, robotics, ergonomics, sustainable manufacturing, machine learning, and sports engineering and provides consultation and training under Dzuki Consultancy and Training.

Prof. Gian Antonio Susto received the M.S. degree (cum laude) in control systems engineering and the Ph.D. degree in informationengineering from the University of Padova, Padua, Italy, in 2009 and 2013, respectively. He was a Visiting Student with the University of California San Diego, San Diego, CA, USA, and the National University of Ireland (NUIM), Maynooth, Ireland, an Intern Researcher with Infineon Technologies Austria AG, Villach, Austria, and a Postdoctoral Associate with NUIM in 2013. He is currently an Assistant Professor with the University of Padova and the co-founder of Statwolf Ltd., Dublin, Ireland. His current research interests include deep and machine learning, industry 4.0, activity/gesture recognition, and natural language processing. Dr. Susto received the IEEE-CASE Best Student Conference Paper Award in 2011, the IEEE/SEMI-ASMC Best Student Paper Award in 2012, and the IEEE-MSC Best Student Paper Award in 2012.

Dr Yukinori Mukai obtained his B.Sc. and M.Sc. in Kagoshima University, Japan, and Ph.D. degree from Kinki University, Japan. He studied fish larvae and their sensory organs in order to improve larval rearing methods. He then became a lecturer of Aquaculture Course in Universiti Malaysia Sabah (UMS). He is currently an Associate Professor since 2011 in the Department of Marine Science, Kulliyyah of Science, International Islamic University Malaysia (IIUM). He has studied demand feeding system, optimum light wavelength and intensity for larval and juvenile rearing, infusoria culture as live feed, and genetic diversity in wild fish and has cultured fishes in UMS and IIUM.

Xếp hạng sách điện tử này

Cho chúng tôi biết suy nghĩ của bạn.

Đọc thông tin

Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho AndroidiPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.