Lectures on Real-valued Functions

· Springer Nature
E-book
452
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

This book offers several topics of mathematical analysis which are closely connected with significant properties of real-valued functions of various types (such as semi-continuous functions, monotone functions, convex functions, measurable functions, additive and linear functionals, etc.). Alongside with fairly traditional themes of real analysis and classical measure theory, more profound questions are thoroughly discussed in the book – appropriate extensions and restrictions of functions, oscillation functions and their characterization, discontinuous functions on resolvable topological spaces, pointwise limits of finite sums of periodic functions, some general results on invariant and quasi-invariant measures, the structure of non-measurable sets and functions, the Baire property of functions on topological spaces and its connections with measurability properties of functions, logical and set-theoretical aspects of the behavior of real-valued functions.

À propos de l'auteur

Alexander Kharazishvili is a chief researcher at the A. Razmadze Mathematical Institute of Tbilisi State University and a member of the Georgian National Academy of Sciences. His research interests mainly concern real analysis and measure theory, mostly with various properties of real-valued functions such as topological, algebraic, measure-theoretical, etc. He has more than 300 scientific publications and is the author of the book "Strange Functions in Real Analysis", published by CRC Press. The third edition of this book was published in 2018.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.