Lectures on Boolean Algebras

¡
¡ Springer Science & Business Media
āχ-āĻŦ⧁āĻ•
148
āĻĒ⧃āĻˇā§āĻ āĻž
āϰ⧇āϟāĻŋāĻ‚ āĻ“ āϰāĻŋāĻ­āĻŋāω āϝāĻžāϚāĻžāχ āĻ•āϰāĻž āĻšā§ŸāύāĻŋ  āφāϰāĻ“ āϜāĻžāύ⧁āύ

āĻāχ āχ-āĻŦ⧁āϕ⧇āϰ āĻŦāĻŋāĻˇā§Ÿā§‡

IN 1959 I lectured on Boolean algebras at the University of Chicago. A mimeographed version of the notes on which the lectures were based circulated for about two years; this volume contains those notes, corrected and revised. Most of the corrections were suggested by Peter Crawley. To judge by his detailed and precise suggestions, he must have read every word, checked every reference, and weighed every argument, and I am lIery grateful to hirn for his help. This is not to say that he is to be held responsible for the imperfec tions that remain, and, in particular, I alone am responsible for all expressions of personal opinion and irreverent view point. P. R. H. Ann Arbor, Michigan ] anuary, 1963 Contents Section Page 1 1 Boolean rings ............................ . 2 Boolean algebras ......................... . 3 9 3 Fields of sets ............................ . 4 Regular open sets . . . . . . . . . . . . . . . . . . . 12 . . . . . . 5 Elementary relations. . . . . . . . . . . . . . . . . . 17 . . . . . 6 Order. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 . . . . . . . . . 7 Infinite operations. . .. . . . . . . . . . . . . . . . . 25 . . . . . 8 Subalgebras . . . . . . . . . . . . . . . . . . . . .. . . . 31 . . . . . . 9 Homomorphisms . . . . . . . . . . . . . . . . . . . . 35 . . . . . . . 10 Free algebras . . . . . . . . . . . . . . . . . . . . . . 40 . . . . . . . 11 Ideals and filters. . . . . . . . . . . . . . . . . . . . 47 . . . . . . 12 The homomorphism theorem. . . . . . . . . . . . .. . . 52 . . 13 Boolean a-algebras . . . . . . . . . . . . . . . . . . 55 . . . . . . 14 The countable chain condition . . . . . . . . . . . . 61 . . . 15 Measure algebras . . . . . . . . . . . . . . . . . . . 64 . . . . . . . 16 Atoms.. . . . .. . . . . .. .. . .. ... . . . . .. . . ... . . .. 69 17 Boolean spaces . . . . . . . . . . . . . . . . . . . . 72 . . . . . . . 18 The representation theorem. . . . . . . . . . . . . . 77 . . . 19 Duali ty for ideals . . . . . . . . . . . . . . . . . .. . . 81 . . . . . 20 Duality for homomorphisms . . . . . . . . . . . . . . 84 . . . . 21 Completion . . . . . . . . . . . . . . . . . . . . . . . 90 . . . . . . . . 22 Boolean a-spaces . . . . . . . . . . . . . . . . . .. . . 97 . . . . . 23 The representation of a-algebras . . . . . . . . .. . . 100 . 24 Boolean measure spaces . . . . . . . . . . . . . .. . . 104 . . . 25 Incomplete algebras . . . . . . . . . . . . . . . .. . . 109 . . . . . 26 Products of algebras . . . . . . . . . . . . . . . .. . . 115 . . . . 27 Sums of algebras . . . . . . . . . . . . . . . . . .. . . 119 . . . . . 28 Isomorphisms of factors . . . . . . . . . . . . . .. . . 122 . . .

āχ-āĻŦ⧁āϕ⧇ āϰ⧇āϟāĻŋāĻ‚ āĻĻāĻŋāύ

āφāĻĒāύāĻžāϰ āĻŽāϤāĻžāĻŽāϤ āϜāĻžāύāĻžāύāĨ¤

āĻĒāĻ āύ āϤāĻĨā§āϝ

āĻ¸ā§āĻŽāĻžāĻ°ā§āϟāĻĢā§‹āύ āĻāĻŦāĻ‚ āĻŸā§āϝāĻžāĻŦāϞ⧇āϟ
Android āĻāĻŦāĻ‚ iPad/iPhone āĻāϰ āϜāĻ¨ā§āϝ Google Play āĻŦāχ āĻ…ā§āϝāĻžāĻĒ āχāύāĻ¸ā§āϟāϞ āĻ•āϰ⧁āύāĨ¤ āĻāϟāĻŋ āφāĻĒāύāĻžāϰ āĻ…ā§āϝāĻžāĻ•āĻžāωāĻ¨ā§āĻŸā§‡āϰ āϏāĻžāĻĨ⧇ āĻ…āĻŸā§‹āĻŽā§‡āϟāĻŋāĻ• āϏāĻŋāĻ™ā§āĻ• āĻšā§Ÿ āĻ“ āφāĻĒāύāĻŋ āĻ…āύāϞāĻžāχāύ āĻŦāĻž āĻ…āĻĢāϞāĻžāχāύ āϝāĻžāχ āĻĨāĻžāϕ⧁āύ āύāĻž āϕ⧇āύ āφāĻĒāύāĻžāϕ⧇ āĻĒ⧜āϤ⧇ āĻĻā§‡ā§ŸāĨ¤
āĻ˛ā§āϝāĻžāĻĒāϟāĻĒ āĻ“ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ
Google Play āĻĨ⧇āϕ⧇ āϕ⧇āύāĻž āĻ…āĻĄāĻŋāĻ“āĻŦ⧁āĻ• āφāĻĒāύāĻŋ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ⧇āϰ āĻ“ā§Ÿā§‡āĻŦ āĻŦā§āϰāĻžāωāϜāĻžāϰ⧇ āĻļ⧁āύāϤ⧇ āĻĒāĻžāϰ⧇āύāĨ¤
eReader āĻāĻŦāĻ‚ āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āĻĄāĻŋāĻ­āĻžāχāϏ
Kobo eReaders-āĻāϰ āĻŽāϤ⧋ e-ink āĻĄāĻŋāĻ­āĻžāχāϏ⧇ āĻĒāĻĄāĻŧāϤ⧇, āφāĻĒāύāĻžāϕ⧇ āĻāĻ•āϟāĻŋ āĻĢāĻžāχāϞ āĻĄāĻžāωāύāϞ⧋āĻĄ āĻ“ āφāĻĒāύāĻžāϰ āĻĄāĻŋāĻ­āĻžāχāϏ⧇ āĻŸā§āϰāĻžāĻ¨ā§āϏāĻĢāĻžāϰ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤ āĻŦā§āϝāĻŦāĻšāĻžāϰāĻ•āĻžāϰ⧀āϰ āωāĻĻā§āĻĻ⧇āĻļā§āϝ⧇ āϤ⧈āϰāĻŋ āϏāĻšāĻžā§ŸāϤāĻž āϕ⧇āĻ¨ā§āĻĻā§āϰāϤ⧇ āĻĻ⧇āĻ“ā§ŸāĻž āύāĻŋāĻ°ā§āĻĻ⧇āĻļāĻžāĻŦāϞ⧀ āĻ…āύ⧁āϏāϰāĻŖ āĻ•āϰ⧇ āϝ⧇āϏāĻŦ eReader-āĻ āĻĢāĻžāχāϞ āĻĒāĻĄāĻŧāĻž āϝāĻžāĻŦ⧇ āϏ⧇āĻ–āĻžāύ⧇ āĻŸā§āϰāĻžāĻ¨ā§āϏāĻĢāĻžāϰ āĻ•āϰ⧁āύāĨ¤