Invariant Forms on Grassmann Manifolds

· Annals of Mathematics Studies សៀវភៅទី 89 · Princeton University Press
សៀវភៅ​អេឡិចត្រូនិច
128
ទំព័រ
មានសិទ្ធិ
ការវាយតម្លៃ និងមតិវាយតម្លៃមិនត្រូវបានផ្ទៀងផ្ទាត់ទេ ស្វែងយល់បន្ថែម

អំពីសៀវភៅ​អេឡិចត្រូនិកនេះ

This work offers a contribution in the geometric form of the theory of several complex variables. Since complex Grassmann manifolds serve as classifying spaces of complex vector bundles, the cohomology structure of a complex Grassmann manifold is of importance for the construction of Chern classes of complex vector bundles. The cohomology ring of a Grassmannian is therefore of interest in topology, differential geometry, algebraic geometry, and complex analysis. Wilhelm Stoll treats certain aspects of the complex analysis point of view.



This work originated with questions in value distribution theory. Here analytic sets and differential forms rather than the corresponding homology and cohomology classes are considered. On the Grassmann manifold, the cohomology ring is isomorphic to the ring of differential forms invariant under the unitary group, and each cohomology class is determined by a family of analytic sets.

វាយតម្លៃសៀវភៅ​អេឡិចត្រូនិកនេះ

ប្រាប់យើងអំពីការយល់ឃើញរបស់អ្នក។

អាន​ព័ត៌មាន

ទូរសព្ទឆ្លាតវៃ និង​ថេប្លេត
ដំឡើងកម្មវិធី Google Play Books សម្រាប់ Android និង iPad/iPhone ។ វា​ធ្វើសមកាលកម្ម​ដោយស្វ័យប្រវត្តិជាមួយ​គណនី​របស់អ្នក​ និង​អនុញ្ញាតឱ្យ​អ្នកអានពេល​មានអ៊ីនធឺណិត ឬគ្មាន​អ៊ីនធឺណិត​នៅគ្រប់ទីកន្លែង។
កុំព្យូទ័រ​យួរដៃ និងកុំព្យូទ័រ
អ្នកអាចស្ដាប់សៀវភៅជាសំឡេងដែលបានទិញនៅក្នុង Google Play ដោយប្រើកម្មវិធីរុករកតាមអ៊ីនធឺណិតក្នុងកុំព្យូទ័ររបស់អ្នក។
eReaders និង​ឧបករណ៍​ផ្សេង​ទៀត
ដើម្បីអាននៅលើ​ឧបករណ៍ e-ink ដូចជា​ឧបករណ៍អាន​សៀវភៅអេឡិចត្រូនិក Kobo អ្នកនឹងត្រូវ​ទាញយក​ឯកសារ ហើយ​ផ្ទេរវាទៅ​ឧបករណ៍​របស់អ្នក។ សូមអនុវត្តតាម​ការណែនាំលម្អិតរបស់មជ្ឈមណ្ឌលជំនួយ ដើម្បីផ្ទេរឯកសារ​ទៅឧបករណ៍អានសៀវភៅ​អេឡិចត្រូនិកដែលស្គាល់។