Introduction to l2-invariants

· Springer Nature
Электронная книга
183
Количество страниц
Оценки и отзывы не проверены. Подробнее…

Об электронной книге

This book introduces the reader to the most important concepts and problems in the field of l2-invariants. After some foundational material on group von Neumann algebras, l2-Betti numbers are defined and their use is illustrated by several examples. The text continues with Atiyah's question on possible values of l2-Betti numbers and the relation to Kaplansky's zero divisor conjecture. The general definition of l2-Betti numbers allows for applications in group theory. A whole chapter is dedicated to Lück's approximation theorem and its generalizations. The final chapter deals with l2-torsion, twisted variants and the conjectures relating them to torsion growth in homology. The text provides a self-contained treatment that constructs the required specialized concepts from scratch. It comes with numerous exercises and examples, so that both graduate students and researchers will find it useful for self-study or as a basis for an advanced lecture course.

Об авторе

Holger Kammeyer studied Mathematics at Göttingen and Berkeley. After a postdoc position in Bonn he is now based at Karlsruhe Institute of Technology. His research interests range around algebraic topology and group theory. The application of l 2-invariants forms a recurrent theme in his work. He has given introductory courses on the matter on various occasions.

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.