Introduction to l2-invariants

· Springer Nature
e-Buku
183
Halaman
Rating dan ulasan tidak disahkan  Ketahui Lebih Lanjut

Perihal e-buku ini

This book introduces the reader to the most important concepts and problems in the field of l2-invariants. After some foundational material on group von Neumann algebras, l2-Betti numbers are defined and their use is illustrated by several examples. The text continues with Atiyah's question on possible values of l2-Betti numbers and the relation to Kaplansky's zero divisor conjecture. The general definition of l2-Betti numbers allows for applications in group theory. A whole chapter is dedicated to Lück's approximation theorem and its generalizations. The final chapter deals with l2-torsion, twisted variants and the conjectures relating them to torsion growth in homology. The text provides a self-contained treatment that constructs the required specialized concepts from scratch. It comes with numerous exercises and examples, so that both graduate students and researchers will find it useful for self-study or as a basis for an advanced lecture course.

Perihal pengarang

Holger Kammeyer studied Mathematics at Göttingen and Berkeley. After a postdoc position in Bonn he is now based at Karlsruhe Institute of Technology. His research interests range around algebraic topology and group theory. The application of l 2-invariants forms a recurrent theme in his work. He has given introductory courses on the matter on various occasions.

Berikan rating untuk e-Buku ini

Beritahu kami pendapat anda.

Maklumat pembacaan

Telefon pintar dan tablet
Pasang apl Google Play Books untuk Android dan iPad/iPhone. Apl ini menyegerak secara automatik dengan akaun anda dan membenarkan anda membaca di dalam atau luar talian, walau di mana jua anda berada.
Komputer riba dan komputer
Anda boleh mendengar buku audio yang dibeli di Google Play menggunakan penyemak imbas web komputer anda.
eReader dan peranti lain
Untuk membaca pada peranti e-dakwat seperti Kobo eReaders, anda perlu memuat turun fail dan memindahkan fail itu ke peranti anda. Sila ikut arahan Pusat Bantuan yang terperinci untuk memindahkan fail ke e-Pembaca yang disokong.