Introduction to l2-invariants

· Springer Nature
E-kirja
183
sivuja
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

This book introduces the reader to the most important concepts and problems in the field of l2-invariants. After some foundational material on group von Neumann algebras, l2-Betti numbers are defined and their use is illustrated by several examples. The text continues with Atiyah's question on possible values of l2-Betti numbers and the relation to Kaplansky's zero divisor conjecture. The general definition of l2-Betti numbers allows for applications in group theory. A whole chapter is dedicated to Lück's approximation theorem and its generalizations. The final chapter deals with l2-torsion, twisted variants and the conjectures relating them to torsion growth in homology. The text provides a self-contained treatment that constructs the required specialized concepts from scratch. It comes with numerous exercises and examples, so that both graduate students and researchers will find it useful for self-study or as a basis for an advanced lecture course.

Tietoja kirjoittajasta

Holger Kammeyer studied Mathematics at Göttingen and Berkeley. After a postdoc position in Bonn he is now based at Karlsruhe Institute of Technology. His research interests range around algebraic topology and group theory. The application of l 2-invariants forms a recurrent theme in his work. He has given introductory courses on the matter on various occasions.

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.