Introduction to Traveling Waves

· ·
· CRC Press
eBook
174
페이지
적용 가능
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Introduction to Traveling Waves is an invitation to research focused on traveling waves for undergraduate and masters level students. Traveling waves are not typically covered in the undergraduate curriculum, and topics related to traveling waves are usually only covered in research papers, except for a few texts designed for students. This book includes techniques that are not covered in those texts.

Through their experience involving undergraduate and graduate students in a research topic related to traveling waves, the authors found that the main difficulty is to provide reading materials that contain the background information sufficient to start a research project without an expectation of an extensive list of prerequisites beyond regular undergraduate coursework. This book meets that need and serves as an entry point into research topics about the existence and stability of traveling waves.

Features

  • Self-contained, step-by-step introduction to nonlinear waves written assuming minimal prerequisites, such as an undergraduate course on linear algebra and differential equations.
  • Suitable as a textbook for a special topics course, or as supplementary reading for courses on modeling.
  • Contains numerous examples to support the theoretical material.
  • Supplementary MATLAB codes available via GitHub.
  • 저자 정보

    Anna R. Ghazaryan is a Professor of Mathematics at Miami University, Oxford, OH. She received her Ph.D. in 2005 from the Ohio State University. She is an applied analyst with research interests in applied dynamical systems, more precisely, traveling waves and their stability.

    Stéphane Lafortune

    is Professor of Mathematics at the College of Charleston in South Carolina. He earned his Ph.D. in Physics from the Université de Montréal and Université Paris VII in 2000. He is an applied mathematician who works on nonlinear waves phenomena. More precisely, he is interested in the theory of integrable systems and in the problems of existence and stability of solutions to nonlinear partial differential equations.

    Vahagn Manukian

    is an Associate Professor of Mathematics at Miami University. He obtained a M.A. Degree Mathematics from SUNY at Buffalo and a Ph.D. in mathematics from the Ohio State University in 2005. Vahagn Manukian uses dynamical systems methods such as local and global bifurcation theory to analyze singularly perturbed nonlinear reaction diffusions systems that model natural phenomena.

    이 eBook 평가

    의견을 알려주세요.

    읽기 정보

    스마트폰 및 태블릿
    AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
    노트북 및 컴퓨터
    컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
    eReader 및 기타 기기
    Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.