The topical coverage includes interior point methods, self-concordance theory and related complexity issues, first and second order methods with accelerated convergence, nonlinear rescaling (NR) theory and exterior point methods, just to mention a few. The book contains a unified approach to both interior and exterior point methods with emphasis of the crucial duality role. One of the main achievements of the book shows what makes the exterior point methods numerically attractive and why.
The book is composed in five parts. The first part contains the basics of calculus, convex analysis, elements of unconstrained optimization, as well as classical results of linear and convex optimization. The second part contains the basics of self-concordance theory and interior point methods, including complexity results for LP, QP, and QP with quadratic constraint, semidefinite and conic programming. In the third part, the NR and Lagrangian transformation theories are considered and exterior point methods are described. Three important problems in finding equilibrium are considered in the fourth part. In the fifth and final part of the book, several important applications arising in economics, structural optimization, medicine, statistical learning theory, and more, are detailed. Numerical results, obtained by solving a number of real life and test problems, are also provided.
Roman Polyak is Emeritus professor of mathematics and operations research at George Mason University and visiting professor at Technion. He is the author/co-author of several monographs, books chapters, and journal papers. His expertise and interests are in linear and nonlinear programming, game theory, and mathematical economics. Dr. Polyak developed Nonlinear Rescaling (NR) theory and methods of constrained optimization.