Studienarbeit aus dem Jahr 2002 im Fachbereich Mathematik - Analysis, Note: gut (2), Martin-Luther-UniversitÃĪt Halle-Wittenberg (Numerische Mathematik), Veranstaltung: Numerik-Praktikum, Sprache: Deutsch, Abstract: HÃĪufig kommt es vor, dass in den verschiedensten Bereichen Daten dargestellt werden mÞssen, die einen periodischen Verlauf annehmen. Dies ist zum Beispiel in der Medizin â bei der Darstellung von Fieberkurven, Herzfunktionen o.ÃĪ. â der Fall. Aber auch bei den Oszillographen in der Physik oder bei der geschichtlichen Analogrechnung oder bei Berechnungen durch das Messen von StrÃķmen. Um diese Daten praktisch anschaulich darstellen zu kÃķnnen, empfiehlt es sich, diese durch eine Kurve zu interpolieren â was in der Praxis auch so gemacht wird. Hier kommt nun die Numerischen Mathematiker ins Spiel, zu dessen Teilgebieten ja die Interpolation von Datenkurven/ Funktion gehÃķrt. Die nÃĪchste Frage ist nun, auf welche Weise diese periodischen Datenkurven oder Funktionen interpoliert werden sollen. Als Ausgangsfunktion wÃĪren hier Polynome, Splines oder auch Winkelfunktionen denkbar. Welche am besten fÞr die Interpolation solcher periodischer Datenkurven oder Funktionen geeignet sind, soll im nÃĪchsten Kapitel erÃķrtert werden. Weiter mÃķchte ich dann auf die theoretischen Grundlagen der Interpolation periodischer Funktionen eingehen, im vierten Kapitel versuchen, ein Programm dazu zu erarbeiten und zum Schluss ein selbstgewÃĪhltes Beispiel mit meinem Programm zu bearbeiten und gegebenenfalls zu diskutieren.