Integrated Photonics for Sensing Applications

· ·
· Elsevier
eBook
350
페이지
적용 가능
이 책은 2026년 4월 1일에 구매할 수 있으며 출판 전에는 청구되지 않습니다.

eBook 정보

Photonic Integrated Circuits for Sensing Applications delves into the fascinating world of sensors within the realm of integrated photonics. The book begins with a historical overview, tracing the evolution of spectroscopic sensing techniques such as FTIR, Raman, SPR, and reflectometry, each contributing to the field's growth. It emphasizes the transformative potential of photonic integrated circuit (PIC) sensor systems by showcasing their advantages in achieving low SWAP-C metrics (size, weight, power, and cost) while maintaining high performance. Complete with technical insights, the book sets the stage for understanding how PICs are revolutionizing sensing applications across diverse industries.Beyond the introductory scope, the book thoroughly examines the components that constitute PIC sensor systems, including waveguides (operating below and above 1550 nm), ring resonators, photonic crystals, and MZ interferometers. It also explores integrated systems designed for chem–bio sensing applications, leveraging biofunctionalization and sorbent technologies. With attention to manufacturing scalability, topics such as materials, PDK development, and sensor packaging are addressed, ensuring readers grasp the practical aspects of producing advanced sensor systems at scale. - Focuses on an important applications area of interest to readers from materials science, electrical engineering, optical engineering, nanotechnology, and manufacturing - Allows readers to understand the different PIC technologies available, along with their characteristics, advantages, disadvantages, and key challenges - Delves into the fascinating world of sensors within the realm of integrated photonics

저자 정보

Anu Agarwal is a Principal Research Scientist at MIT, where she is developing an integrated Si-CMOS compatible platform of linear and non-linear materials for photonic devices and systems, especially in the mid-IR regime, for hyperspectral imaging and chem-bio sensing, because most chemical pollutants and biological toxins have their fingerprints in this range.

Benjamin Miller joined the University of Rochester faculty in 1996, where he is currently Dean’s Professor of Dermatology, Biochemistry and Biophysics, Biomedical Engineering, and Optics. His group’s expertise in interferometric and photonic sensing has been applied to the development of several novel optical biosensor platforms, and his group’s work on RNA-targeted drug discovery has resulted in synthetic compounds targeting RNAs involved in several human diseases.

Juejun (JJ) Hu is currently the John F. Elliott Professor of Materials Science and Engineering at MIT. His primary research interest covers new optical materials exemplified by chalcogenide compounds, as well as enhanced photon-matter interactions in nanophotonic structures. He has authored and coauthored over 150 refereed journal publications and technologies developed in his lab have led to several spin-off companies.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.