Impurities Confined in Quantum Structures

·
· Springer Series in Materials Science 第 77 冊 · Springer Science & Business Media
電子書
139
頁數
評分和評論未經驗證 瞭解詳情

關於這本電子書

The dramatic impact of low dimensional semiconductor structures on c- rent and future device applications cannot be overstated. Research over the last decade has highlighted the use of quantum engineering to achieve p- viously unknown limits for device performance in research laboratories. The modi?ed electronic structure of semiconductor quantum structures results in transport and optical properties, which di?er from those of constituent bulk materials. The possibility to tailor properties, such as bandgap, strain, band o?set etc. , of two-dimensional (2D) semiconductors, e. g. quantum wells, for speci?c purposes has had an extensive impact on the electronics, which has resulted in a dramatic renewal process. For instance, 2D structures are today used in a large number of high speed electronics and optoelectronic appli- tions (e. g. detectors, light emitting diodes, modulators, switches and lasers) and in daily life, in e. g. LED-based tra?c lights, CD-players, cash registers. The introduction of impurities, also in very small concentrations, in a semiconductor can change its optical and electrical properties entirely. This attribute of the semiconductor is utilized in the manifoldness of their app- cations. This fact constitutes the principal driving force for investigation of the properties of the impurities in semiconductors. While the impurities in bulk materials have been investigated for a long time, and their properties are fairly well established by now, the corresponding studies of impurities in quantum wells is a more recent research area.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。