Hydrogels for Wound Healing

· ·
· Elsevier
電子書
650
符合資格
評分和評論未經驗證  瞭解詳情

關於本電子書

Hydrogels for Wound Healing provides a comprehensive review of the materials, properties, mechanism of action and application of engineered hydrogels in wound treatment. This book thoroughly covers all aspects of hydrogels in wound healing, reviewing a range of key materials and composites – including metal oxides and polymer composites – as well as their design, synthesis, and core properties. The book explores various types of wound healing hydrogels, such as 3D-printed, injectable, sprayable, tunable, and more. Toxicity, clinical and commercial aspects are detailed, providing holistic coverage for those interested in designing and applying these hydrogels in research and clinical settings. This comprehensive resource is a complete reference for materials scientists, biomedical engineers, biomedical scientists and clinicians with an interest in novel wound healing approaches. - Helps the reader discover and understand novel wound healing approaches, arming them with the necessary information to make an informed decision - Covers a range of hydrogel types, including natural and synthetic polymer hydrogels, and metal oxide hydrogels - Details the design, synthesis, properties and characterization of hydrogels

關於作者

Dr. Sabu Thomas (Ph.D.) is the Director of the School of Energy Materials, School of Nanoscience and Nanotechnology of Mahatma Gandhi University, India. He received his Ph. D. in 1987 in Polymer Engineering from the Indian Institute of Technology (IIT), Kharagpur, India. He is a fellow of the Royal Society of Chemistry, London, and a member of the American Chemical Society. He has been ranked no.1 in India about the number of publications (most productive scientists). Prof. Thomas’s research group specialized areas of polymers which includes Polymer blends, Fiber filled polymer composites, Particulate-filled polymer composites and their morphological characterization, Ageing and degradation, Pervaporation phenomena, sorption and diffusion, Interpenetrating polymer systems, Recyclability and reuse of waste plastics and rubbers, Elastomer cross-linking, Dual porous nanocomposite scaffolds for tissue engineering, etc. Prof. Thomas’s research group has extensive exchange programs with different industries, research, and academic institutions all over the world and is performing world-class collaborative research in various fields. Professors Centre is equipped with various sophisticated instruments and has established state-of-the-art experimental facilities which cater to the needs of researchers within the country and abroad. His H Index- 133, Google Citations- 86424, Number of Publications- 1300, and Books-160.

Bratati Das is a JSPS postdoctoral fellow at the Institute of Industrial Science, University of Tokyo, Japan. Her research work is concentrated on nano-force sensor development based on mechanochromic polymers.

Hanna J. Maria is a Senior Researcher at the School of Energy Materials and the International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, India. Her research focusses on natural rubber composites and their blends, thermoplastic composites, lignin, nanocellulose, bionanocomposites, nanocellulose, rubber-based composites and nanocomposites.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。