Homogeneous Manifolds with Negative Curvature, Part II

·
· American Mathematical Society: Memoirs of the American Mathematical Society Boek 178 · American Mathematical Soc.
E-boek
102
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

This paper is the second in a series dealing with the structure of the full isometry group I(M) for M a connected, simply connected, homogeneous, Riemannian manifold with non-positive sectional curvature. It is shown that every such manifold determines canonically a conjugacy class of subgroups of I(M) which act simply transitively on M. The class of all simply transitive subgroups of I(M) is identified and it is demonstrated that an arbitrary simply transitive subgroup may be modified slightly to produce a subgroup in the canonical class. The class of all connected Lie groups G for which there exists such a manifold M with G isomorphic to the identity connected component of I(M) is identified by means of a list of structural conditions on the Lie algebra of G. Given an arbitrary connected, simply connected Riemannian manifold M together with a given simply transitive group S of isometries, an algorithm is exhibited to explicitly compute the Lie algebra of I(M) from the transported Riemannian data on S.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.