Homogeneous Manifolds with Negative Curvature, Part II

·
· American Mathematical Society: Memoirs of the American Mathematical Society 178 巻 · American Mathematical Soc.
電子書籍
102
ページ
評価とレビューは確認済みではありません 詳細

この電子書籍について

This paper is the second in a series dealing with the structure of the full isometry group I(M) for M a connected, simply connected, homogeneous, Riemannian manifold with non-positive sectional curvature. It is shown that every such manifold determines canonically a conjugacy class of subgroups of I(M) which act simply transitively on M. The class of all simply transitive subgroups of I(M) is identified and it is demonstrated that an arbitrary simply transitive subgroup may be modified slightly to produce a subgroup in the canonical class. The class of all connected Lie groups G for which there exists such a manifold M with G isomorphic to the identity connected component of I(M) is identified by means of a list of structural conditions on the Lie algebra of G. Given an arbitrary connected, simply connected Riemannian manifold M together with a given simply transitive group S of isometries, an algorithm is exhibited to explicitly compute the Lie algebra of I(M) from the transported Riemannian data on S.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。