Harmonics and Weather

ยท Flag เดชเตเดธเตโ€Œเดคเด•เด‚, 5 ยท Jerome Heath
เด‡-เดฌเตเด•เตเด•เต
15
เดชเต‡เดœเตเด•เตพ
เดฏเต‹เด—เตเดฏเดคเดฏเตเดฃเตเดŸเต
เดฑเต‡เดฑเตเดฑเดฟเด‚เด—เตเด•เดณเตเด‚ เดฑเดฟเดตเตเดฏเต‚เด•เดณเตเด‚ เดชเดฐเดฟเดถเต‹เดงเดฟเดšเตเดšเตเดฑเดชเตเดชเดฟเดšเตเดšเดคเดฒเตเดฒ ย เด•เต‚เดŸเตเดคเดฒเดฑเดฟเดฏเตเด•

เดˆ เด‡-เดฌเตเด•เตเด•เดฟเดจเต†เด•เตเด•เตเดฑเดฟเดšเตเดšเต

Degrees of Freedom Uncertainty

This is the degrees of freedom uncertainty rule [which actually allows us freedom]. We can never be sure which individual went this way and which went the other way [that is what entropy and Carnotโ€™s โ€˜jinksโ€™ on Maxwellโ€™s demons is all about]. This is a statistical population; there are enough members to apply the statistical rule [the rule of large numbers]. That is the same rule [just inverted] as the degrees of freedom uncertainty principle [which says that you cannot specify Newtonian activity on populations that provide excellent statistical results because of the same theory of large numbers. - You canโ€™t have your cake and eat it too [precisely what Carnoy meant]. Also, the difficulties with this rule could be resolved easily; by applying the viewpoint of harmonics.

So, under the degrees of freedom uncertainty [when that applies {strongly enough}] you have harmonics. This is the fact that systems under the rule of degrees of freedom uncertainty and that are constrained [in certain natural or โ€œharmonicsโ€ ways.] can form โ€œnaturalโ€ patterns. Harmonics [the name] refers to the patterns since they form in harmonic kine [a set of eigenfunctions]. The pattern does not specify where any part [molecule] is at or how fast it is going. The pattern is an envelope of probability distribution for the randomly distributed contents. This does not allow Maxwell's Demons to sneak some particles into a special place to violate equilibrium rules.

Harmonics and Weather

Tornados (in a group) and hurricanes seem to be capable of doing similar damage. Tornados and hurricanes are definitely harmonic behavior. But they seem to be opposites in construction - or should I say etiology.

Hurricanes cannot have any shear in the upper atmosphere and severe tornados seem to need (lots of) shear in the upper atmosphere.

Remembering the Shroedinger equation for the Hydrogen atom and what it means; I think that same methodology or nearly the same methodology applies in this case. At least the methodology of defining the constraints that apply to the process needs to be done. Then the solutions to that Shroedinger equivalent equation, based on those constraints, are the harmonics available to that weather event. But the constraints are not easy to define. And the constraints of a hurricane are quite different than those of the tornado.

I donโ€™t think the thermodynamic equations can be applied as part of the constraints. That is because the most important term in the equation (the entropy) is only an approximation that fits (closely) to the functional basis of the overall equation. Entropy is not a functional variable. Entropy is a probability distribution. I also have come to the conclusion that entropy (how the energy distributes itself in a system) is, actually, the solution to the Shroedinger equation not part of the constraints.

I believe that following the defining issues of molecular flow of individual molecules and then adding them together into the macro-level, is the only way to define the constraints on these processes (https://sites.google.com/site/theheathsite/tornado - this describes the methodology for doing this process . . . but this description is just for defining the constraints for simple weather patterns). The process needs to deal with molecules because much (if perhaps not all) of the energy we deal with, directly, is molecular.

The use of the Shroedinger wave equation for physical level processes has two caveats. The Shroedinger equation is supposed to define the action of a system completely. That implies that it does not matter whether it is at the physical level or quantum level. Also my belief is that the formula applies particularly to the entropy portion at the physical level. The entropy โ€œdancesโ€ to the tune of the system constraints.

To get down to this with a reasonable problem would be to develop the Schoedinger [รถ = oe] equation for a developing hurricane. The rising of warm moist air is easy. But you need to include the Coriolis effect and the capture of energy in the falling of small water drops that are flowing past rising 100% humidity air vapor, which is the engine of the hurricane. There are certain other factors that are always in the formula. The point is - as Schroedinger only partially recognized - the equation produces something akin the probabilities [squaring the result is thought to give the probability of finding something {who knows what} at that point]. I think the better answer is that the equation develops the envelope for the system since the degree of freedom uncertainty does not allow anything that is closer to Newton Only to be expressed.

เดฐเดšเดฏเดฟเดคเดพเดตเดฟเดจเต† เด•เตเดฑเดฟเดšเตเดšเต

Dr. Jerome Heath, Retiredย Professor of Computer Science at Hawaii Pacific University.

Holds the Ph. D.ย from the University of Hawaii in โ€˜Communication and Information Scienceโ€™. Dr.ย Heath taught both Management Information Systems and Computer Science atย the university level. Presently Dr. Heath is retired from teaching and is writingย 

textbooks. The textbooks include: ย โ€˜Context Based Philosophyโ€™, โ€˜The Animated Computerโ€™, and โ€˜Hermeneutics in Agile Software Developmentโ€™. These books are available from Google.ย 

Try: "Dr. Jerome Heath Books Google".


เดˆ เด‡-เดฌเตเด•เตเด•เต เดฑเต‡เดฑเตเดฑเต เดšเต†เดฏเตเดฏเตเด•

เดจเดฟเด™เตเด™เดณเตเดŸเต† เด…เดญเดฟเดชเตเดฐเดพเดฏเด‚ เดžเด™เตเด™เดณเต† เด…เดฑเดฟเดฏเดฟเด•เตเด•เตเด•.

เดตเดพเดฏเดจเดพ เดตเดฟเดตเดฐเด™เตเด™เตพ

เดธเตโ€ŒเดฎเดพเตผเดŸเตเดŸเตเดซเต‹เดฃเตเด•เดณเตเด‚ เดŸเดพเดฌเตโ€Œเดฒเต†เดฑเตเดฑเตเด•เดณเตเด‚
Android, iPad/iPhone เดŽเดจเตเดจเดฟเดตเดฏเตเด•เตเด•เดพเดฏเดฟ Google Play เดฌเตเด•เตโ€Œเดธเต เด†เดชเตเดชเต เด‡เตปเดธเตโ€Œเดฑเตเดฑเดพเตพ เดšเต†เดฏเตเดฏเตเด•. เด‡เดคเต เดจเดฟเด™เตเด™เดณเตเดŸเต† เด…เด•เตเด•เต—เดฃเตเดŸเตเดฎเดพเดฏเดฟ เดธเตเดตเดฏเดฎเต‡เดต เดธเดฎเดจเตเดตเดฏเดฟเดชเตเดชเดฟเด•เตเด•เดชเตเดชเต†เดŸเตเด•เดฏเตเด‚, เดŽเดตเดฟเดŸเต† เด†เดฏเดฟเดฐเตเดจเตเดจเดพเดฒเตเด‚ เด“เตบเดฒเตˆเดจเดฟเตฝ เด…เดฒเตเดฒเต†เด™เตเด•เดฟเตฝ เด“เดซเตโ€Œเดฒเตˆเดจเดฟเตฝ เดตเดพเดฏเดฟเด•เตเด•เดพเตป เดจเดฟเด™เตเด™เดณเต† เด…เดจเตเดตเดฆเดฟเด•เตเด•เตเด•เดฏเตเด‚ เดšเต†เดฏเตเดฏเตเดจเตเดจเต.
เดฒเดพเดชเตเดŸเต‹เดชเตเดชเตเด•เดณเตเด‚ เด•เดฎเตเดชเตเดฏเต‚เดŸเตเดŸเดฑเตเด•เดณเตเด‚
Google Play-เดฏเดฟเตฝ เดจเดฟเดจเตเดจเต เดตเดพเด™เตเด™เดฟเดฏเดฟเดŸเตเดŸเตเดณเตเดณ เด“เดกเดฟเดฏเต‹ เดฌเตเด•เตเด•เตเด•เตพ เด•เดฎเตเดชเตเดฏเต‚เดŸเตเดŸเดฑเดฟเดจเตโ€เดฑเต† เดตเต†เดฌเต เดฌเตเดฐเต—เดธเตผ เด‰เดชเดฏเต‹เด—เดฟเดšเตเดšเตเด•เตŠเดฃเตเดŸเต เดตเดพเดฏเดฟเด•เตเด•เดพเดตเตเดจเตเดจเดคเดพเดฃเต.
เด‡-เดฑเต€เดกเดฑเตเด•เดณเตเด‚ เดฎเดฑเตเดฑเต เด‰เดชเด•เดฐเดฃเด™เตเด™เดณเตเด‚
Kobo เด‡-เดฑเต€เดกเดฑเตเด•เตพ เดชเต‹เดฒเตเดณเตเดณ เด‡-เด‡เด™เตเด•เต เด‰เดชเด•เดฐเดฃเด™เตเด™เดณเดฟเตฝ เดตเดพเดฏเดฟเด•เตเด•เดพเตป เด’เดฐเต เดซเดฏเตฝ เดกเต—เตบเดฒเต‹เดกเต เดšเต†เดฏเตเดคเต เด…เดคเต เดจเดฟเด™เตเด™เดณเตเดŸเต† เด‰เดชเด•เดฐเดฃเดคเตเดคเดฟเดฒเต‡เด•เตเด•เต เด•เตˆเดฎเดพเดฑเต‡เดฃเตเดŸเดคเตเดฃเตเดŸเต. เดชเดฟเดจเตเดคเตเดฃเดฏเตเดณเตเดณ เด‡-เดฑเต€เดกเดฑเตเด•เดณเดฟเดฒเต‡เด•เตเด•เต เดซเดฏเดฒเตเด•เตพ เด•เตˆเดฎเดพเดฑเดพเตป, เดธเดนเดพเดฏ เด•เต‡เดจเตเดฆเตเดฐเดคเตเดคเดฟเดฒเตเดณเตเดณ เดตเดฟเดถเดฆเดฎเดพเดฏ เดจเดฟเตผเดฆเตเดฆเต‡เดถเด™เตเด™เตพ เดซเต‹เดณเต‹ เดšเต†เดฏเตเดฏเตเด•.

เดธเต€เดฐเต€เดธเต เดคเตเดŸเดฐเตเด•

Dr. Jerome Heath เดŽเดจเตเดจ เดฐเดšเดฏเดฟเดคเดพเดตเดฟเดจเตเดฑเต† เด•เต‚เดŸเตเดคเตฝ เดชเตเดธเตโ€Œเดคเด•เด™เตเด™เตพ

เดธเดฎเดพเดจเดฎเดพเดฏ เด‡-เดฌเตเด•เตเด•เตเด•เตพ