Handbook of Combinatorial Optimization

┬╖
┬╖ Springer Science & Business Media
4.0
2 рд╕рдореАрдХреНрд╖рд╛рдПрдВ
рдИ-рдмреБрдХ
2406
рдкреЗрдЬ
рд░реЗрдЯрд┐рдВрдЧ рдФрд░ рд╕рдореАрдХреНрд╖рд╛рдУрдВ рдХреА рдкреБрд╖реНрдЯрд┐ рдирд╣реАрдВ рд╣реБрдИ рд╣реИ ┬ардЬрд╝реНрдпрд╛рджрд╛ рдЬрд╛рдиреЗрдВ

рдЗрд╕ рдИ-рдмреБрдХ рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ рдЬрд╛рдирдХрд╛рд░реА

Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dualheuristics).

рд░реЗрдЯрд┐рдВрдЧ рдФрд░ рд╕рдореАрдХреНрд╖рд╛рдПрдВ

4.0
2 рд╕рдореАрдХреНрд╖рд╛рдПрдВ

рдЗрд╕ рдИ-рдмреБрдХ рдХреЛ рд░реЗрдЯрд┐рдВрдЧ рджреЗрдВ

рд╣рдореЗрдВ рдЕрдкрдиреА рд░рд╛рдп рдмрддрд╛рдПрдВ.

рдкрдарди рдЬрд╛рдирдХрд╛рд░реА

рд╕реНрдорд╛рд░реНрдЯрдлрд╝реЛрди рдФрд░ рдЯреИрдмрд▓реЗрдЯ
Android рдФрд░ iPad/iPhone рдХреЗ рд▓рд┐рдП Google Play рдХрд┐рддрд╛рдмреЗрдВ рдРрдкреНрд▓рд┐рдХреЗрд╢рди рдЗрдВрд╕реНрдЯреЙрд▓ рдХрд░реЗрдВ. рдпрд╣ рдЖрдкрдХреЗ рдЦрд╛рддреЗ рдХреЗ рд╕рд╛рде рдЕрдкрдиреЗ рдЖрдк рд╕рд┐рдВрдХ рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ рдЖрдкрдХреЛ рдХрд╣реАрдВ рднреА рдСрдирд▓рд╛рдЗрди рдпрд╛ рдСрдлрд╝рд▓рд╛рдЗрди рдкрдврд╝рдиреЗ рдХреА рд╕реБрд╡рд┐рдзрд╛ рджреЗрддрд╛ рд╣реИ.
рд▓реИрдкрдЯреЙрдк рдФрд░ рдХрдВрдкреНрдпреВрдЯрд░
рдЖрдк рдЕрдкрдиреЗ рдХрдВрдкреНрдпреВрдЯрд░ рдХреЗ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЬрд╝рд░ рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░рдХреЗ Google Play рдкрд░ рдЦрд░реАрджреА рдЧрдИ рдСрдбрд┐рдпреЛ рдХрд┐рддрд╛рдмреЗрдВ рд╕реБрди рд╕рдХрддреЗ рд╣реИрдВ.
eReaders рдФрд░ рдЕрдиреНрдп рдбрд┐рд╡рд╛рдЗрд╕
Kobo рдИ-рд░реАрдбрд░ рдЬреИрд╕реА рдИ-рдЗрдВрдХ рдбрд┐рд╡рд╛рдЗрд╕реЛрдВ рдкрд░ рдХреБрдЫ рдкрдврд╝рдиреЗ рдХреЗ рд▓рд┐рдП, рдЖрдкрдХреЛ рдлрд╝рд╛рдЗрд▓ рдбрд╛рдЙрдирд▓реЛрдб рдХрд░рдХреЗ рдЙрд╕реЗ рдЕрдкрдиреЗ рдбрд┐рд╡рд╛рдЗрд╕ рдкрд░ рдЯреНрд░рд╛рдВрд╕рдлрд╝рд░ рдХрд░рдирд╛ рд╣реЛрдЧрд╛. рдИ-рд░реАрдбрд░ рдкрд░ рдХрд╛рдо рдХрд░рдиреЗ рд╡рд╛рд▓реА рдлрд╝рд╛рдЗрд▓реЛрдВ рдХреЛ рдИ-рд░реАрдбрд░ рдкрд░ рдЯреНрд░рд╛рдВрд╕рдлрд╝рд░ рдХрд░рдиреЗ рдХреЗ рд▓рд┐рдП, рд╕рд╣рд╛рдпрддрд╛ рдХреЗрдВрджреНрд░ рдХреЗ рдирд┐рд░реНрджреЗрд╢реЛрдВ рдХрд╛ рдкрд╛рд▓рди рдХрд░реЗрдВ.

Ding-Zhu Du рдХреА рдУрд░ рд╕реЗ рдЬрд╝реНрдпрд╛рджрд╛

рдорд┐рд▓рддреА-рдЬреБрд▓рддреА рдИ-рдмреБрдХ