Geometrical Kaleidoscope (Second Edition)

· Problem Solving In Mathematics And Beyond Книга 33 · World Scientific
Электронная книга
188
Количество страниц
Можно добавить
Оценки и отзывы не проверены. Подробнее…

Об электронной книге

The goal of the book is to provide insight into many enjoyable and fascinating aspects of geometry, and to reveal interesting geometrical properties. The emphasis is on the practical applications of theory in the problem-solving process. The chapters cover a myriad of topics among which are the classic theorems and formulas such as Archimedes' Law of the Lever, the Pythagorean Theorem, Heron's formula, Brahmagupta's formula, Appollonius's Theorem, Euler's line properties, the Nine-Point Circle, Fagnano's Problem, the Steiner-Lehmus Theorem, Napoleon's Theorem, Ceva's Theorem, Menelaus's Theorem, Pompeiu's Theorem, and Morley's Miracle. The book focuses on geometric thinking — what it means, how to develop it, and how to recognize it. 'Geometrical Kaleidoscope' consists of a kaleidoscope of topics that seem to not be related at first glance. However, that perception disappears as you go from chapter to chapter and explore the multitude of surprising relationships, unexpected connections, and links. Readers solving a chain of problems will learn from them general techniques, rather than isolated instances of the application of a technique. In spite of the many problems' challenging character, their solutions require no more than a basic knowledge covered in a high school geometry curriculum. There are plenty of problems for readers to work out for themselves (solutions are provided at the end of the book).In the 2nd edition of the book there are many new ideas and additional explanations that help the reader better understand the solutions of problems and connect the chapters to one another. A new chapter 'Alternative proofs of the Pythagorean Theorem' is added. It covers seven different proofs of the famous theorem and discusses its generalizations and applications. There is also Appendix and Index added, which were missing in the first edition of the book.

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.