Functions with Disconnected Spectrum

·
· University Lecture Series Boek 65 · American Mathematical Soc.
E-boek
138
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

The classical sampling problem is to reconstruct entire functions with given spectrum S from their values on a discrete set L. From the geometric point of view, the possibility of such reconstruction is equivalent to determining for which sets L the exponential system with frequencies in L forms a frame in the space L2(S). The book also treats the problem of interpolation of discrete functions by analytic ones with spectrum in S and the problem of completeness of discrete translates. The size and arithmetic structure of both the spectrum S and the discrete set L play a crucial role in these problems.

After an elementary introduction, the authors give a new presentation of classical results due to Beurling, Kahane, and Landau. The main part of the book focuses on recent progress in the area, such as construction of universal sampling sets, high-dimensional and non-analytic phenomena.

The reader will see how methods of harmonic and complex analysis interplay with various important concepts in different areas, such as Minkowski's lattice, Kolmogorov's width, and Meyer's quasicrystals.

The book is addressed to graduate students and researchers interested in analysis and its applications. Due to its many exercises, mostly given with hints, the book could be useful for undergraduates.

Over de auteur

Alexander M. Olevskii: Tel Aviv University, Tel Aviv, Israel,
Alexander Ulanovskii: Stavanger University, Stavanger, Norway

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.