Functions with Disconnected Spectrum

·
· University Lecture Series Buku 65 · American Mathematical Soc.
eBook
138
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

The classical sampling problem is to reconstruct entire functions with given spectrum S from their values on a discrete set L. From the geometric point of view, the possibility of such reconstruction is equivalent to determining for which sets L the exponential system with frequencies in L forms a frame in the space L2(S). The book also treats the problem of interpolation of discrete functions by analytic ones with spectrum in S and the problem of completeness of discrete translates. The size and arithmetic structure of both the spectrum S and the discrete set L play a crucial role in these problems.

After an elementary introduction, the authors give a new presentation of classical results due to Beurling, Kahane, and Landau. The main part of the book focuses on recent progress in the area, such as construction of universal sampling sets, high-dimensional and non-analytic phenomena.

The reader will see how methods of harmonic and complex analysis interplay with various important concepts in different areas, such as Minkowski's lattice, Kolmogorov's width, and Meyer's quasicrystals.

The book is addressed to graduate students and researchers interested in analysis and its applications. Due to its many exercises, mostly given with hints, the book could be useful for undergraduates.

Tentang pengarang

Alexander M. Olevskii: Tel Aviv University, Tel Aviv, Israel,
Alexander Ulanovskii: Stavanger University, Stavanger, Norway

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.