Introduction to Matrix Analysis and Applications

· Springer Science & Business Media
4.0
2 reviews
Ebook
332
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Matrices can be studied in different ways. They are a linear algebraic structure and have a topological/analytical aspect (for example, the normed space of matrices) and they also carry an order structure that is induced by positive semidefinite matrices. The interplay of these closely related structures is an essential feature of matrix analysis.

This book explains these aspects of matrix analysis from a functional analysis point of view. After an introduction to matrices and functional analysis, it covers more advanced topics such as matrix monotone functions, matrix means, majorization and entropies. Several applications to quantum information are also included.

Introduction to Matrix Analysis and Applications is appropriate for an advanced graduate course on matrix analysis, particularly aimed at studying quantum information. It can also be used as a reference for researchers in quantum information, statistics, engineering and economics.

Ratings and reviews

4.0
2 reviews
Archana . A
May 8, 2021
Nice
Did you find this helpful?

About the author

Fumio Hiai is an Emeritus Professor at the Graduate School of Information Science, Tohoku University, Sendai, Japan, whose research interests are operator theory, operator algebras and quantum probability. He published more than 95 papers and several books on various subjects of mathematics, including more than 20 papers on matrix analysis. His recent interest is also quantum information.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.