Field Arithmetic: Edition 4

· Springer Nature
Kitabu pepe
827
Kurasa
Ukadiriaji na maoni hayajahakikishwa  Pata Maelezo Zaidi

Kuhusu kitabu pepe hiki

This book uses algebraic tools to study the elementary properties of classes of fields and related algorithmic problems. The first part covers foundational material on infinite Galois theory, profinite groups, algebraic function fields in one variable and plane curves. It provides complete and elementary proofs of the Chebotarev density theorem and the Riemann hypothesis for function fields, together with material on ultraproducts, decision procedures, the elementary theory of algebraically closed fields, undecidability and nonstandard model theory, including a nonstandard proof of Hilbert's irreducibility theorem. The focus then turns to the study of pseudo algebraically closed (PAC) fields, related structures and associated decidability and undecidability results. PAC fields (fields K with the property that every absolutely irreducible variety over K has a rational point) first arose in the elementary theory of finite fields and have deep connections with number theory.

Thisfourth edition substantially extends, updates and clarifies the previous editions of this celebrated book, and includes a new chapter on Hilbertian subfields of Galois extensions. Almost every chapter concludes with a set of exercises and bibliographical notes. An appendix presents a selection of open research problems.

Drawing from a wide literature at the interface of logic and arithmetic, this detailed and self-contained text can serve both as a textbook for graduate courses and as an invaluable reference for seasoned researchers.

Kuhusu mwandishi

Michael D. Fried received his PhD in Mathematics from the University of Michigan in 1967. After postdoctoral research at the Institute for Advanced Study (1967–1969), he became professor at Stony Brook University (8 years), the University of California at Irvine (26 years), the University of Florida (3 years) and the Hebrew University (2 years). He has held visiting positions at MIT, MSRI, the University of Michigan, the University of Florida, the Hebrew University, and Tel Aviv University. He has been an editor of several mathematics journals including the Research Announcements of the Bulletin of the American Mathematical Society and the Journal of Finite Fields and its Applications. His research is primarily in the geometry and arithmetic of families of nonsingular projective curve covers applied to classical moduli spaces using theta functions and l-adic representations. These are especially applied to relating the Regular Inverse Galois Problem and extensions of Serre's Open Image Theorem. He was included in 2013 Class of Fellows of the American Mathematical Society. He was also a Sloan Fellow (1972–1974), Lady Davis Fellow at Hebrew University (1987–1988), Fulbright scholar at Helsinki University (1982–1983), and Alexander von Humboldt Research Fellow (1994–1996).

Moshe Jarden received his PhD in Mathematics from the Hebrew University of Jerusalem in 1970 under the supervision of Hillel Furstenberg. His post-doctoral research was completed during the years 1971–1973 at the Institute of Mathematics, Heidelberg University, where he habilitated in 1972. In 1974, he returned to Israel, and joined the School of Mathematics of Tel Aviv University. He became a full professor in 1982, and the incumbent of the Cissie and Aaron Beare Chair in Algebra and Number Theory in 1998. His research focuses on families of large algebraic extensions of Hilbertian fields. His book Field Arithmetic (1986) earned him the Landau Prize in 1987. For his pioneering work, and especially his long term cooperation with German mathematicians, he was awarded the L. Meithner-A.v.Humboldt Prize by the Alexander von Humboldt Foundation in 2001. He is the author of “Algebraic Patching”, a Springer Monographs in Mathematics book and a joint author with Dan Haran of another book “The Absolute Galois group of a Semi-Local Fields” of the above-mentioned Springer Monographs in Mathematics.

Kadiria kitabu pepe hiki

Tupe maoni yako.

Kusoma maelezo

Simu mahiri na kompyuta vibao
Sakinisha programu ya Vitabu vya Google Play kwa ajili ya Android na iPad au iPhone. Itasawazishwa kiotomatiki kwenye akaunti yako na kukuruhusu usome vitabu mtandaoni au nje ya mtandao popote ulipo.
Kompyuta za kupakata na kompyuta
Unaweza kusikiliza vitabu vilivyonunuliwa kwenye Google Play wakati unatumia kivinjari cha kompyuta yako.
Visomaji pepe na vifaa vingine
Ili usome kwenye vifaa vya wino pepe kama vile visomaji vya vitabu pepe vya Kobo, utahitaji kupakua faili kisha ulihamishie kwenye kifaa chako. Fuatilia maagizo ya kina ya Kituo cha Usaidizi ili uhamishe faili kwenye visomaji vya vitabu pepe vinavyotumika.