Federated Learning in Metaverse Healthcare: Personalized Medicine and Wellness

·
· Academic Press
电子书
300
符合条件
该图书的上架销售日期为 2025年8月29日。图书上架后,我们才会向您收取相关费用。

关于此电子书

Federated Learning in Metaverse Healthcare: Personalized Medicine and Wellness explores the integration of the metaverse with healthcare, offering immersive experiences and personalized care. The book introduces federated learning, emphasizing its advantages over traditional centralized machine learning in healthcare. It provides a historical context and discusses the technological advancements that led to the emergence of metaverse healthcare. Privacy-preserving methods crucial for protecting sensitive healthcare data within federated learning environments are also examined, underscoring the importance of secure communication protocols. Other important points include the transformation of healthcare delivery through virtual environments, remote consultations, and immersive experiences.The role of telemedicine in facilitating remote diagnostics and consultations via virtual platforms, and the applications of augmented reality wearables for real-time health monitoring and wellness tracking are detailed. Additionally, the book discusses federated learning's ability to deliver personalized treatment plans tailored to individual patient needs, its role in predictive modeling for disease risks and prevention, as well as virtual health coaches offering personalized guidance for wellness management. The challenges and ethical dilemmas of metaverse healthcare and federated learning, along with potential solutions, are also considered. - Explains privacy-preserving techniques in federated learning, such as federated averaging, differential privacy, and secure aggregation, thus ensuring the protection of sensitive healthcare data - Presents use cases and case studies that demonstrate the practical applications of federated learning in virtual healthcare settings - Illustrates its impact on patient care, medical research, and healthcare innovation - Contains contributions from leading experts in the fields of healthcare, artificial intelligence, and virtual reality, providing valuable insights and perspectives on the intersection of federated learning and metaverse healthcare

作者简介

Dr. Shubham Mahajan, a distinguished member of prestigious organizations such as IEEE, ACM, and IAENG, boasts an impressive academic and professional background. He earned his B.Tech. degree from Baba Ghulam Shah Badshah University, his M.Tech. degree from Chandigarh University, and his Ph.D. degree from Shri Mata Vaishno Devi University (SMVDU) in Katra, India. Dr. Mahajan has a remarkable track record in the field of artificial intelligence and image processing, holding an impressive portfolio of eleven Indian patents, as well as one Australian and one German patent. His contributions to the field are further evidenced by his extensive publication record, which includes over 100+ articles published in peer-reviewed journals, conferences and 10+ books. His research interests span a wide array of topics, encompassing image processing, video compression, image segmentation, fuzzy entropy, nature-inspired computing methods, optimization, data mining, machine learning, robotics, and optical communication. Notably, his dedication and expertise have earned him the 'Best Research Paper Award' from ICRIC 2019, published by Springer in the LNEE series. In recognition of his exceptional achievements, Dr. Mahajan has received numerous accolades and honours throughout his career. These include the Best Student Award in 2019, the IEEE Region-10 Travel Grant Award in 2019, the 2nd runner-up prize in the IEEE RAS HACKATHON in 2019 (held in Bangladesh), the IEEE Student Early Researcher Conference Fund (SERCF) in 2020, the Emerging Scientist Award in 2021, and the IEEE Signal Processing Society Professional Development Grant in 2021. His commitment to excellence in research was further underscored by his receipt of the Excellence in Research Award in 2023. Dr. Mahajan's impact extends beyond the realm of academia. He has served as a Campus Ambassador for IEEE, representing esteemed institutions such as IIT Bombay, Kanpur, Varanasi, Delhi, as well as various multinational corporations. His active engagement in fostering international research collaborations reflects his enthusiasm for advancing the frontiers of knowledge and innovation on a global scale.

Jyotir Moy Chatterjee is currently an Assistant Professor in Department of Computer Science and Engineering at Graphic Era (Deemed to be University), in Dehradun, India. He also serves as a Visiting Faculty member in Information Technology at Lord Buddha Education Foundation, which is affiliated with the Asia Pacific University of Technology & Innovation in Kathmandu, Nepal. His research interests focus on advancements in Machine Learning and Deep Learning.

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。