Factorizing the Classical Inequalities

· American Mathematical Society: Memoirs of the American Mathematical Society Kitap 576 · American Mathematical Soc.
E-kitap
130
Sayfa
Puanlar ve yorumlar doğrulanmaz Daha Fazla Bilgi

Bu e-kitap hakkında

This volume describes a new way of looking at the classical inequalities. The most famous such results (Hilbert, Hardy, and Copson) may be interpreted as inclusion relationships, $l^p\subseteq Y$, between certain (Banach) sequence spaces, the norm of the injection being the best constant of the particular inequality. The authors' approach is to replace $l^p$ by a larger space, $X$, with the properties: $\Vert l^p\subseteq X\Vert =1$ and $\Vert X\subseteq Y\Vert =\Vert l^p\subseteq Y\Vert$, the norm on $X$ being so designed that the former property is intuitive. Any such result constitutes an enhancement of the original inequality, because you now have the classical estimate, $\Vert l^p\subseteq Y\Vert$, holding for a larger collection, $X=Y$. The authors' analysis has some noteworthy features: The inequalities of Hilbert, Hardy, and Copson (and others) all share the same space $Y$. That space-alias ces($p$ )-being central to so many celebrated inequalities, the authors conclude, must surely be important. It is studied here in considerable detail. The renorming of $Y$ is based upon a simple factorization, $Y= l^p\cdot Z$ (coordinatewise products), wherein $Z$ is described explicitly. That there is indeed a renorming, however, is not so simple. It is proved only after much preparation when duality theory is considered.

Bu e-kitaba puan verin

Düşüncelerinizi bizimle paylaşın.

Okuma bilgileri

Akıllı telefonlar ve tabletler
Android ve iPad/iPhone için Google Play Kitaplar uygulamasını yükleyin. Bu uygulama, hesabınızla otomatik olarak senkronize olur ve nerede olursanız olun çevrimiçi veya çevrimdışı olarak okumanıza olanak sağlar.
Dizüstü bilgisayarlar ve masaüstü bilgisayarlar
Bilgisayarınızın web tarayıcısını kullanarak Google Play'de satın alınan sesli kitapları dinleyebilirsiniz.
e-Okuyucular ve diğer cihazlar
Kobo eReader gibi e-mürekkep cihazlarında okumak için dosyayı indirip cihazınıza aktarmanız gerekir. Dosyaları desteklenen e-kitap okuyuculara aktarmak için lütfen ayrıntılı Yardım Merkezi talimatlarını uygulayın.