Factorizing the Classical Inequalities

· American Mathematical Society: Memoirs of the American Mathematical Society 576. књига · American Mathematical Soc.
E-knjiga
130
Stranica
Ocene i recenzije nisu verifikovane  Saznajte više

O ovoj e-knjizi

This volume describes a new way of looking at the classical inequalities. The most famous such results (Hilbert, Hardy, and Copson) may be interpreted as inclusion relationships, $l^p\subseteq Y$, between certain (Banach) sequence spaces, the norm of the injection being the best constant of the particular inequality. The authors' approach is to replace $l^p$ by a larger space, $X$, with the properties: $\Vert l^p\subseteq X\Vert =1$ and $\Vert X\subseteq Y\Vert =\Vert l^p\subseteq Y\Vert$, the norm on $X$ being so designed that the former property is intuitive. Any such result constitutes an enhancement of the original inequality, because you now have the classical estimate, $\Vert l^p\subseteq Y\Vert$, holding for a larger collection, $X=Y$. The authors' analysis has some noteworthy features: The inequalities of Hilbert, Hardy, and Copson (and others) all share the same space $Y$. That space-alias ces($p$ )-being central to so many celebrated inequalities, the authors conclude, must surely be important. It is studied here in considerable detail. The renorming of $Y$ is based upon a simple factorization, $Y= l^p\cdot Z$ (coordinatewise products), wherein $Z$ is described explicitly. That there is indeed a renorming, however, is not so simple. It is proved only after much preparation when duality theory is considered.

Ocenite ovu e-knjigu

Javite nam svoje mišljenje.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play knjige za Android i iPad/iPhone. Automatski se sinhronizuje sa nalogom i omogućava vam da čitate onlajn i oflajn gde god da se nalazite.
Laptopovi i računari
Možete da slušate audio-knjige kupljene na Google Play-u pomoću veb-pregledača na računaru.
E-čitači i drugi uređaji
Da biste čitali na uređajima koje koriste e-mastilo, kao što su Kobo e-čitači, treba da preuzmete fajl i prenesete ga na uređaj. Pratite detaljna uputstva iz centra za pomoć da biste preneli fajlove u podržane e-čitače.