Factorizing the Classical Inequalities

· American Mathematical Society: Memoirs of the American Mathematical Society पुस्तक 576 · American Mathematical Soc.
ई-पुस्तक
130
पेज
रेटिंग आणि परीक्षणे यांची पडताळणी केलेली नाही  अधिक जाणून घ्या

या ई-पुस्तकाविषयी

This volume describes a new way of looking at the classical inequalities. The most famous such results (Hilbert, Hardy, and Copson) may be interpreted as inclusion relationships, $l^p\subseteq Y$, between certain (Banach) sequence spaces, the norm of the injection being the best constant of the particular inequality. The authors' approach is to replace $l^p$ by a larger space, $X$, with the properties: $\Vert l^p\subseteq X\Vert =1$ and $\Vert X\subseteq Y\Vert =\Vert l^p\subseteq Y\Vert$, the norm on $X$ being so designed that the former property is intuitive. Any such result constitutes an enhancement of the original inequality, because you now have the classical estimate, $\Vert l^p\subseteq Y\Vert$, holding for a larger collection, $X=Y$. The authors' analysis has some noteworthy features: The inequalities of Hilbert, Hardy, and Copson (and others) all share the same space $Y$. That space-alias ces($p$ )-being central to so many celebrated inequalities, the authors conclude, must surely be important. It is studied here in considerable detail. The renorming of $Y$ is based upon a simple factorization, $Y= l^p\cdot Z$ (coordinatewise products), wherein $Z$ is described explicitly. That there is indeed a renorming, however, is not so simple. It is proved only after much preparation when duality theory is considered.

या ई-पुस्तकला रेटिंग द्या

तुम्हाला काय वाटते ते आम्हाला सांगा.

वाचन माहिती

स्मार्टफोन आणि टॅबलेट
Android आणि iPad/iPhone साठी Google Play बुक अ‍ॅप इंस्‍टॉल करा. हे तुमच्‍या खात्‍याने आपोआप सिंक होते आणि तुम्‍ही जेथे कुठे असाल तेथून तुम्‍हाला ऑनलाइन किंवा ऑफलाइन वाचण्‍याची अनुमती देते.
लॅपटॉप आणि कॉंप्युटर
तुम्ही तुमच्या काँप्युटरचा वेब ब्राउझर वापरून Google Play वर खरेदी केलेली ऑडिओबुक ऐकू शकता.
ईवाचक आणि इतर डिव्हाइसेस
Kobo eReaders सारख्या ई-इंक डिव्‍हाइसवर वाचण्‍यासाठी, तुम्ही एखादी फाइल डाउनलोड करून ती तुमच्‍या डिव्‍हाइसवर ट्रान्सफर करणे आवश्यक आहे. सपोर्ट असलेल्या eReaders वर फाइल ट्रान्सफर करण्यासाठी, मदत केंद्र मधील तपशीलवार सूचना फॉलो करा.