Factorizing the Classical Inequalities

· American Mathematical Society: Memoirs of the American Mathematical Society Libro 576 · American Mathematical Soc.
eBook
130
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

This volume describes a new way of looking at the classical inequalities. The most famous such results (Hilbert, Hardy, and Copson) may be interpreted as inclusion relationships, $l^p\subseteq Y$, between certain (Banach) sequence spaces, the norm of the injection being the best constant of the particular inequality. The authors' approach is to replace $l^p$ by a larger space, $X$, with the properties: $\Vert l^p\subseteq X\Vert =1$ and $\Vert X\subseteq Y\Vert =\Vert l^p\subseteq Y\Vert$, the norm on $X$ being so designed that the former property is intuitive. Any such result constitutes an enhancement of the original inequality, because you now have the classical estimate, $\Vert l^p\subseteq Y\Vert$, holding for a larger collection, $X=Y$. The authors' analysis has some noteworthy features: The inequalities of Hilbert, Hardy, and Copson (and others) all share the same space $Y$. That space-alias ces($p$ )-being central to so many celebrated inequalities, the authors conclude, must surely be important. It is studied here in considerable detail. The renorming of $Y$ is based upon a simple factorization, $Y= l^p\cdot Z$ (coordinatewise products), wherein $Z$ is described explicitly. That there is indeed a renorming, however, is not so simple. It is proved only after much preparation when duality theory is considered.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.