Factorizing the Classical Inequalities

· American Mathematical Society: Memoirs of the American Mathematical Society Kitab 576 · American Mathematical Soc.
E-kitab
130
Səhifələr
Reytinqlər və rəylər doğrulanmır  Ətraflı Məlumat

Bu e-kitab haqqında

This volume describes a new way of looking at the classical inequalities. The most famous such results (Hilbert, Hardy, and Copson) may be interpreted as inclusion relationships, $l^p\subseteq Y$, between certain (Banach) sequence spaces, the norm of the injection being the best constant of the particular inequality. The authors' approach is to replace $l^p$ by a larger space, $X$, with the properties: $\Vert l^p\subseteq X\Vert =1$ and $\Vert X\subseteq Y\Vert =\Vert l^p\subseteq Y\Vert$, the norm on $X$ being so designed that the former property is intuitive. Any such result constitutes an enhancement of the original inequality, because you now have the classical estimate, $\Vert l^p\subseteq Y\Vert$, holding for a larger collection, $X=Y$. The authors' analysis has some noteworthy features: The inequalities of Hilbert, Hardy, and Copson (and others) all share the same space $Y$. That space-alias ces($p$ )-being central to so many celebrated inequalities, the authors conclude, must surely be important. It is studied here in considerable detail. The renorming of $Y$ is based upon a simple factorization, $Y= l^p\cdot Z$ (coordinatewise products), wherein $Z$ is described explicitly. That there is indeed a renorming, however, is not so simple. It is proved only after much preparation when duality theory is considered.

Bu e-kitabı qiymətləndirin

Fikirlərinizi bizə deyin

Məlumat oxunur

Smartfonlar və planşetlər
AndroidiPad/iPhone üçün Google Play Kitablar tətbiqini quraşdırın. Bu hesabınızla avtomatik sinxronlaşır və harada olmağınızdan asılı olmayaraq onlayn və oflayn rejimdə oxumanıza imkan yaradır.
Noutbuklar və kompüterlər
Kompüterinizin veb brauzerini istifadə etməklə Google Play'də alınmış audio kitabları dinləyə bilərsiniz.
eReader'lər və digər cihazlar
Kobo eReaders kimi e-mürəkkəb cihazlarında oxumaq üçün faylı endirməli və onu cihazınıza köçürməlisiniz. Faylları dəstəklənən eReader'lərə köçürmək üçün ətraflı Yardım Mərkəzi təlimatlarını izləyin.