Ergodicity, Stabilization, and Singular Perturbations for Bellman-Isaacs Equations

·
· American Mathematical Soc.
E-grāmata
77
Lappuses
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

The authors study singular perturbations of optimal stochastic control problems and differential games arising in the dimension reduction of system with multiple time scales. They analyze the uniform convergence of the value functions via the associated Hamilton-Jacobi-Bellman-Isaacs equations, in the framework of viscosity solutions. The crucial properties of ergodicity and stabilization to a constant that the Hamiltonian must possess are formulated as differential games with ergodic cost criteria. They are studied under various different assumptions and with PDE as well as control-theoretic methods. The authors also construct an explicit example where the convergence is not uniform. Finally they give some applications to the periodic homogenization of Hamilton-Jacobi equations with non-coercive Hamiltonian and of some degenerate parabolic PDEs. Table of Contents: Introduction and statement of the problem; Abstract ergodicity, stabilization, and convergence; Uncontrolled fast variables and averaging; Uniformly nondegenerate fast diffusion; Hypoelliptic diffusion of the fast variables; Controllable fast variables; Nonresonant fast variables; A counterexample to uniform convergence; Applications to homogenization; Bibliography. (MEMO/204/960)

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.