Ergodicity, Stabilization, and Singular Perturbations for Bellman-Isaacs Equations

·
· American Mathematical Soc.
Rafbók
77
Síður
Einkunnir og umsagnir eru ekki staðfestar  Nánar

Um þessa rafbók

The authors study singular perturbations of optimal stochastic control problems and differential games arising in the dimension reduction of system with multiple time scales. They analyze the uniform convergence of the value functions via the associated Hamilton-Jacobi-Bellman-Isaacs equations, in the framework of viscosity solutions. The crucial properties of ergodicity and stabilization to a constant that the Hamiltonian must possess are formulated as differential games with ergodic cost criteria. They are studied under various different assumptions and with PDE as well as control-theoretic methods. The authors also construct an explicit example where the convergence is not uniform. Finally they give some applications to the periodic homogenization of Hamilton-Jacobi equations with non-coercive Hamiltonian and of some degenerate parabolic PDEs. Table of Contents: Introduction and statement of the problem; Abstract ergodicity, stabilization, and convergence; Uncontrolled fast variables and averaging; Uniformly nondegenerate fast diffusion; Hypoelliptic diffusion of the fast variables; Controllable fast variables; Nonresonant fast variables; A counterexample to uniform convergence; Applications to homogenization; Bibliography. (MEMO/204/960)

Gefa þessari rafbók einkunn.

Segðu okkur hvað þér finnst.

Upplýsingar um lestur

Snjallsímar og spjaldtölvur
Settu upp forritið Google Play Books fyrir Android og iPad/iPhone. Það samstillist sjálfkrafa við reikninginn þinn og gerir þér kleift að lesa með eða án nettengingar hvar sem þú ert.
Fartölvur og tölvur
Hægt er að hlusta á hljóðbækur sem keyptar eru í Google Play í vafranum í tölvunni.
Lesbretti og önnur tæki
Til að lesa af lesbrettum eins og Kobo-lesbrettum þarftu að hlaða niður skrá og flytja hana yfir í tækið þitt. Fylgdu nákvæmum leiðbeiningum hjálparmiðstöðvar til að flytja skrár yfir í studd lesbretti.