Ergodicity, Stabilization, and Singular Perturbations for Bellman-Isaacs Equations

·
· American Mathematical Soc.
ebook
77
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

The authors study singular perturbations of optimal stochastic control problems and differential games arising in the dimension reduction of system with multiple time scales. They analyze the uniform convergence of the value functions via the associated Hamilton-Jacobi-Bellman-Isaacs equations, in the framework of viscosity solutions. The crucial properties of ergodicity and stabilization to a constant that the Hamiltonian must possess are formulated as differential games with ergodic cost criteria. They are studied under various different assumptions and with PDE as well as control-theoretic methods. The authors also construct an explicit example where the convergence is not uniform. Finally they give some applications to the periodic homogenization of Hamilton-Jacobi equations with non-coercive Hamiltonian and of some degenerate parabolic PDEs. Table of Contents: Introduction and statement of the problem; Abstract ergodicity, stabilization, and convergence; Uncontrolled fast variables and averaging; Uniformly nondegenerate fast diffusion; Hypoelliptic diffusion of the fast variables; Controllable fast variables; Nonresonant fast variables; A counterexample to uniform convergence; Applications to homogenization; Bibliography. (MEMO/204/960)

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.