Elementary Linear Algebra

· The Saylor Foundation
4,4
87 yorum
E-kitap
433
Sayfa
Puanlar ve yorumlar doğrulanmaz Daha Fazla Bilgi

Bu e-kitap hakkında

This is an introduction to linear algebra. The main part of the book features row operations and
everything is done in terms of the row reduced echelon form and specific algorithms. At the end, the
more abstract notions of vector spaces and linear transformations on vector spaces are presented.
However, this is intended to be a first course in linear algebra for students who are sophomores
or juniors who have had a course in one variable calculus and a reasonable background in college
algebra. I have given complete proofs of all the fundamental ideas, but some topics such as Markov
matrices are not complete in this book but receive a plausible introduction. The book contains a
complete treatment of determinants and a simple proof of the Cayley Hamilton theorem although
these are optional topics. The Jordan form is presented as an appendix. I see this theorem as the
beginning of more advanced topics in linear algebra and not really part of a beginning linear algebra
course. There are extensions of many of the topics of this book in my on line book. I have also
not emphasized that linear algebra can be carried out with any field although there is an optional
section on this topic, most of the book being devoted to either the real numbers or the complex
numbers. It seems to me this is a reasonable specialization for a first course in linear algebra.

Kullanıcı puanları ve yorumlar

4,4
87 yorum

Bu e-kitaba puan verin

Düşüncelerinizi bizimle paylaşın.

Okuma bilgileri

Akıllı telefonlar ve tabletler
Android ve iPad/iPhone için Google Play Kitaplar uygulamasını yükleyin. Bu uygulama, hesabınızla otomatik olarak senkronize olur ve nerede olursanız olun çevrimiçi veya çevrimdışı olarak okumanıza olanak sağlar.
Dizüstü bilgisayarlar ve masaüstü bilgisayarlar
Bilgisayarınızın web tarayıcısını kullanarak Google Play'de satın alınan sesli kitapları dinleyebilirsiniz.
e-Okuyucular ve diğer cihazlar
Kobo eReader gibi e-mürekkep cihazlarında okumak için dosyayı indirip cihazınıza aktarmanız gerekir. Dosyaları desteklenen e-kitap okuyuculara aktarmak için lütfen ayrıntılı Yardım Merkezi talimatlarını uygulayın.