Elementary Linear Algebra

· The Saylor Foundation
4,4
87 arvostelua
E-kirja
433
sivuja
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

This is an introduction to linear algebra. The main part of the book features row operations and
everything is done in terms of the row reduced echelon form and specific algorithms. At the end, the
more abstract notions of vector spaces and linear transformations on vector spaces are presented.
However, this is intended to be a first course in linear algebra for students who are sophomores
or juniors who have had a course in one variable calculus and a reasonable background in college
algebra. I have given complete proofs of all the fundamental ideas, but some topics such as Markov
matrices are not complete in this book but receive a plausible introduction. The book contains a
complete treatment of determinants and a simple proof of the Cayley Hamilton theorem although
these are optional topics. The Jordan form is presented as an appendix. I see this theorem as the
beginning of more advanced topics in linear algebra and not really part of a beginning linear algebra
course. There are extensions of many of the topics of this book in my on line book. I have also
not emphasized that linear algebra can be carried out with any field although there is an optional
section on this topic, most of the book being devoted to either the real numbers or the complex
numbers. It seems to me this is a reasonable specialization for a first course in linear algebra.

Arviot ja arvostelut

4,4
87 arvostelua

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.