Dynamic Programming and Inventory Control

· Studies in Probability, Optimization and Statistics 3. књига · SAGE Publications Limited
Е-књига
384
Страница
Испуњава услове
Оцене и рецензије нису верификоване  Сазнајте више

О овој е-књизи

This book presents a unified theory of dynamic programming and Markov decision processes and its application to a major field of operations research and operations management: inventory control. Models are developed in discrete time as well as in continuous time. For continuous time, this book concentrates only on models of interest to inventory control. For discrete time, the focus is mainly on infinite horizon models. The book also covers the difference between impulse control and continuous control. Ergodic control is considered in the context of impulse control, and some simple rules currently used in practice are justified. Chapter 2 introduces some of the classical static problems which are preliminary to the dynamic models of interest in inventory control. This book is not a general text on control theory and dynamic programming, in that the systems dynamics are mostly limited to inventory models. For these models, however, it seeks to be as comprehensive as possible, although finite horizon models in discrete time are not developed, since they are largely described in existing literature. On the other hand, the ergodic control problem is considered in detail, and probabilistic proofs as well as analytical proofs are provided. The techniques developed in this work can be extended to more complex models, covering additional aspects of inventory control.

Оцените ову е-књигу

Јавите нам своје мишљење.

Информације о читању

Паметни телефони и таблети
Инсталирајте апликацију Google Play књиге за Android и iPad/iPhone. Аутоматски се синхронизује са налогом и омогућава вам да читате онлајн и офлајн где год да се налазите.
Лаптопови и рачунари
Можете да слушате аудио-књиге купљене на Google Play-у помоћу веб-прегледача на рачунару.
Е-читачи и други уређаји
Да бисте читали на уређајима које користе е-мастило, као што су Kobo е-читачи, треба да преузмете фајл и пренесете га на уређај. Пратите детаљна упутства из центра за помоћ да бисте пренели фајлове у подржане е-читаче.