Discrete Mathematical Models in Population Biology: Ecological, Epidemic, and Evolutionary Dynamics

· Springer Nature
E-knjiga
481
Broj stranica
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

This text lays the foundation for understanding the beauty and power of discrete-time models. It covers rich mathematical modeling landscapes, each offering deep insights into the dynamics of biological systems. A harmonious balance is achieved between theoretical principles, mathematical rigor, and practical applications. Illustrative examples, numerical simulations, and empirical case studies are provided to enhance mastery of the subject and facilitate the translation of discrete-time mathematical biology into real-world challenges. Mainly geared to upper undergraduates, the text may also be used in graduate courses focusing on discrete-time modeling.

Chapters 1–4 constitute the core of the text. Instructors will find the dependence chart quite useful when designing their particular course. This invaluable resource begins with an exploration of single-species models where frameworks for discrete-time modeling are established. Competition models and Predator-prey interactions are examined next followed by evolutionary models, structured population models, and models of infectious diseases. The consequences of periodic variations, seasonal changes, and cyclic environmental factors on population dynamics and ecological interactions are investigated within the realm of periodically forced biological models.

This indispensable resource is structured to support educational settings:

  • A first course in biomathematics, introducing students to the fundamental mathematical techniques essential for biological research.
  • A modeling course with a concentration on developing and analyzing mathematical models that encapsulate biological phenomena.
  • An advanced mathematical biology course that offers an in-depth exploration of complex models and sophisticated mathematical frameworks designed to tackle advanced problems in biology.

With its clear exposition and methodical approach, this text educates and inspires students and professionals to apply mathematical biology to real-world situations. While minimal knowledge of calculus is required, the reader should have a solid mathematical background in linear algebra.

O autoru

Saber N. Elaydi is Professor of Mathematics and the department chair at Trinity University in San Antonio, Texas. His main objectives in teaching is to make mathematics accessible to all Trinity students regardless of their background or academic focus. His UTM entitled An Introduction to Difference Equations is in its 3rd edition with Springer.

Jim M. Cushing is Professor Emeritus of the Department of Mathematics at University of Arizona. His research involves the derivation and analysis of mathematical models that describe population and evolutionary dynamics. Professor Cushing is particularly interested in structured population dynamics and also studies evolutionary game theoretic versions of population models.

Ocijenite ovu e-knjigu

Recite nam šta mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play Knjige za Android i iPad/iPhone uređaje. Aplikacija se automatski sinhronizira s vašim računom i omogućava vam čitanje na mreži ili van nje gdje god da se nalazite.
Laptopi i računari
Audio knjige koje su kupljene na Google Playu možete slušati pomoću web preglednika na vašem računaru.
Elektronički čitači i ostali uređaji
Da čitate na e-ink uređajima kao što su Kobo e-čitači, morat ćete preuzeti fajl i prenijeti ga na uređaj. Pratite detaljne upute Centra za pomoć da prenesete fajlove na podržane e-čitače.