Direct Air Capture of CO2

Β·
· ACS In Focus Книга 2 · American Chemical Society
3,2
4 Ρ€Π΅Ρ†Π΅Π½Π·ΠΈΠΈ
Π•-ΠΊΠ½ΠΈΠ³Π°
75
Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†ΠΈ
Π‘ΠΎΠΎΠ΄Π²Π΅Ρ‚Π½Π°
ΠžΡ†Π΅Π½ΠΈΡ‚Π΅ ΠΈ Ρ€Π΅Ρ†Π΅Π½Π·ΠΈΠΈΡ‚Π΅ Π½Π΅ сС ΠΏΠΎΡ‚Π²Ρ€Π΄Π΅Π½ΠΈ Β Π”ΠΎΠ·Π½Π°Ρ˜Ρ‚Π΅ повСќС

Π—Π° Π΅-ΠΊΠ½ΠΈΠ³Π°Π²Π°

Direct air capture is a negative emission technology that captures CO2Β directly from the air. It is shown to be a promising tool for fighting climate change, yet still a work in progress.Β Direct Air Capture of CO2Β provides an overview of this technology, starting with an overview in Chapter 1 of major climate change events, moving into a comprehensive review of negative emission technologies in Chapter 2, including direct air capture. Chapter 2 covers some of the challenges associated with direct air capture and the feasibility of utilizing such a process for large-scale applications.

Chapter 3 presents a literature review of sorbents under investigation for direct air capture. The advantages and disadvantages of each approach for direct air capture are extracted from results published in the literature and are summarized along with areas of ongoing work.

Parallel to ongoing research on developing high-performing sorbents for direct air capture, companies and startups have begun testing pilot to commercial scale direct air capture plants. Chapter 4 summarizes the efforts of such institutions. Global CO2Β markets under development to construct commercialization pathways for direct air capture, such as enhanced oil recovery, synthetic fuels, cement, greenhouses, and food and beverages, are also reviewed in Chapter 4.

The digital primer concludes with the authors’ view on the prospects of direct air capture technology for fighting climate change.

Information provided in all chapters is carefully referenced to relevant literature so the reader may dive deeper into the details if interested. The authors hope this digital primer will bring inspiration and ideas to young scientists.

ΠžΡ†Π΅Π½ΠΈ ΠΈ Ρ€Π΅Ρ†Π΅Π½Π·ΠΈΠΈ

3,2
4 Ρ€Π΅Ρ†Π΅Π½Π·ΠΈΠΈ

Π—Π° Π°Π²Ρ‚ΠΎΡ€ΠΎΡ‚

Hoda Shokrollahzadeh BehbahaniΒ is a Ph.D. candidate in the Department of Chemical Engineering at Arizona State University, focusing on the innovative field of direct air capture (DAC). She obtained her bachelor’s degree in chemical engineering from the Petroleum University of Technology, Iran. Then she completed her master's degree in chemical engineering from the University of Tehran, Iran. Hoda's research focuses on synthesizing and characterizing polymeric sorbents with sustainability applications, particularly in DAC.

Matthew D. GreenΒ is an Associate Professor in Chemical Engineering, the Director of the Center for Negative Carbon Emissions, and the Associate Director of the Biodesign Center for Sustainable Macromolecular Materials and Manufacturing. He obtained a B.S. in Chemical Engineering and Chemistry at Virginia Tech in 2007 and a Ph.D. in Chemical Engineering in 2011 at Virginia Tech. He worked as a postdoctoral researcher at the University of Delaware in the Chemical and Biomolecular Engineering Department before joining the faculty at Arizona State University in 2014. His research is focused on the design and synthesis of ion-containing copolymers for CO2Β sorbents, water purification membranes, and nanocomposites. He has received several awards, including the NSF CAREER Award, NASA Early Career Faculty Award, the Young Membrane Scientist Award by the North American Membrane Society (NAMS), and a Ford Faculty Fellowship from ASU.

ΠžΡ†Π΅Π½Π΅Ρ‚Π΅ ја Π΅-ΠΊΠ½ΠΈΠ³Π°Π²Π°

ΠšΠ°ΠΆΠ΅Ρ‚Π΅ Π½ΠΈ ΡˆΡ‚ΠΎ мислитС.

Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π·Π° Ρ‡ΠΈΡ‚Π°ΡšΠ΅

ΠŸΠ°ΠΌΠ΅Ρ‚Π½ΠΈ Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½ΠΈ ΠΈ Ρ‚Π°Π±Π»Π΅Ρ‚ΠΈ
Π˜Π½ΡΡ‚Π°Π»ΠΈΡ€Π°Ρ˜Ρ‚Π΅ ја Π°ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π°Ρ‚Π° Google Play Books Π·Π° Android ΠΈ iPad/iPhone. Автоматски сС синхронизира со смСтката ΠΈ Π²ΠΈ ΠΎΠ²ΠΎΠ·ΠΌΠΎΠΆΡƒΠ²Π° Π΄Π° Ρ‡ΠΈΡ‚Π°Ρ‚Π΅ онлајн ΠΈΠ»ΠΈ ΠΎΡ„Π»Π°Ρ˜Π½ ΠΊΠ°Π΄Π΅ ΠΈ Π΄Π° стС.
Π›Π°ΠΏΡ‚ΠΎΠΏΠΈ ΠΈ ΠΊΠΎΠΌΠΏΡ˜ΡƒΡ‚Π΅Ρ€ΠΈ
МоТС Π΄Π° ΡΠ»ΡƒΡˆΠ°Ρ‚Π΅ Π°ΡƒΠ΄ΠΈΠΎΠΊΠ½ΠΈΠ³ΠΈ ΠΊΡƒΠΏΠ΅Π½ΠΈ ΠΎΠ΄ Google Play со ΠΊΠΎΡ€ΠΈΡΡ‚Π΅ΡšΠ΅ Π½Π° Π²Π΅Π±-прСлистувачот Π½Π° ΠΊΠΎΠΌΠΏΡ˜ΡƒΡ‚Π΅Ρ€ΠΎΡ‚.
Π•-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈ ΡƒΡ€Π΅Π΄ΠΈ
Π—Π° Π΄Π° Ρ‡ΠΈΡ‚Π°Ρ‚Π΅ Π½Π° ΡƒΡ€Π΅Π΄ΠΈ со Π΅-мастило, ΠΊΠ°ΠΊΠΎ ΡˆΡ‚ΠΎ сС Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈΡ‚Π΅ Kobo, ќС Ρ‚Ρ€Π΅Π±Π° Π΄Π° ΠΏΡ€Π΅Π·Π΅ΠΌΠ΅Ρ‚Π΅ Π΄Π°Ρ‚ΠΎΡ‚Π΅ΠΊΠ° ΠΈ Π΄Π° ја ΠΏΡ€Π΅Ρ„Ρ€Π»ΠΈΡ‚Π΅ Π½Π° ΡƒΡ€Π΅Π΄ΠΎΡ‚. Π‘Π»Π΅Π΄Π΅Ρ‚Π΅ Π³ΠΈ Π΄Π΅Ρ‚Π°Π»Π½ΠΈΡ‚Π΅ упатства Π²ΠΎ Π¦Π΅Π½Ρ‚Π°Ρ€ΠΎΡ‚ Π·Π° помош Π·Π° ΠΏΡ€Π΅Ρ„Ρ€Π»Π°ΡšΠ΅ Π½Π° Π΄Π°Ρ‚ΠΎΡ‚Π΅ΠΊΠΈΡ‚Π΅ Π½Π° ΠΏΠΎΠ΄Π΄Ρ€ΠΆΠ°Π½ΠΈ Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ.