Dimensionsreduzierung: Fortschritte in der Datenverarbeitung für intelligente Systeme

· Robotikwissenschaft [German] Sách 26 · One Billion Knowledgeable
Sách điện tử
354
Trang
Đủ điều kiện
Điểm xếp hạng và bài đánh giá chưa được xác minh  Tìm hiểu thêm

Giới thiệu về sách điện tử này

1: Dimensionsreduktion: Stellt das Konzept und die Notwendigkeit der Reduzierung der Komplexität hochdimensionaler Daten in der Robotik vor.

2: Hauptkomponentenanalyse: Erläutert PCA als wichtige lineare Technik zur Merkmalsextraktion und Datenkomprimierung.


3: Nichtlineare Dimensionsreduktion: Erforscht nichtlineare Techniken zur Erfassung komplexer Datenstrukturen in der Robotik.


4: Eigenface: Behandelt die Verwendung von Eigenfaces zur Gesichtserkennung in der Robotik und demonstriert eine reale Anwendung der Dimensionsreduktion.


5: Empirische orthogonale Funktionen: Beschreibt eine Methode zur Darstellung von Daten auf eine Weise, die wichtige Merkmale für Robotersysteme erfasst.


6: Semidefinite Einbettung: Stellt diese Technik zur Erhaltung von Datenbeziehungen bei gleichzeitiger Reduzierung der Dimensionalität vor, wodurch die Verarbeitung von Roboterdaten verbessert wird.


7: Lineare Diskriminanzanalyse: Erklärt, wie LDA bei Klassifizierungsaufgaben hilft, indem es sich auf die Klassentrennbarkeit in reduzierten Daten konzentriert.


8: Nichtnegative Matrixfaktorisierung: Beschreibt, wie NMF dabei hilft, teilebasierte Darstellungen aus Daten zu extrahieren, insbesondere für die Robotik.


9: Kernel-Hauptkomponentenanalyse: Erweitert PCA mit Kernelmethoden zur Verarbeitung nichtlinearer Daten, die für Robotiksysteme mit komplexen Eingaben von entscheidender Bedeutung sind.


10: Shogun (Toolbox): Hebt die Shogun-Toolbox für maschinelles Lernen hervor, die Methoden zur Dimensionsreduzierung für Robotikanwendungen enthält.


11: Spektrales Clustering: Behandelt diese Technik zum Clustering hochdimensionaler Daten, eine wesentliche Aufgabe bei der Wahrnehmung und dem Verständnis von Robotik.


12: Isomap: Bespricht Isomap, eine Methode zur nichtlinearen Dimensionsreduzierung, und ihre Auswirkungen auf die Verbesserung von Robotikmodellen.


13: Hauptkomponentenregression: Verbindet PCA mit Regression, um die Datendimensionalität zu reduzieren und prädiktive Modelle in der Robotik zu verbessern.


14: Multilineares Subspace-Lernen: Stellt diese fortschrittliche Methode zur Verarbeitung multidimensionaler Daten vor, die die Roboterleistung steigert.


15: Mlpy: Detaillierte Beschreibung der Mlpy-Bibliothek für maschinelles Lernen, die Tools zur Dimensionsreduzierung in Robotersystemen zeigt.


16: Diffusionskarte: Konzentriert sich auf die Diffusionskartentechnik zur Dimensionsreduzierung und ihre Anwendung in der Robotik.


17: Feature-Learning: Erforscht das Konzept des Feature-Learnings und seine Bedeutung für die Verbesserung der Dateninterpretation von Robotersystemen.


18: Kernel-Adaptivfilter: Erläutert diese Filtertechnik zur Anpassung von Modellen an dynamische Daten, wodurch die Entscheidungsfindung von Robotern in Echtzeit verbessert wird.


19: Zufallsprojektion: Bietet Einblicke, wie Zufallsprojektionstechniken die Dimensionsreduzierung für große Datensätze in der Robotik beschleunigen können.


20: Feature-Engineering: Stellt den Prozess des Entwerfens von Features vor, die Robotern helfen, ihre Umgebung besser zu verstehen und mit ihr zu interagieren.


21: Multivariate Normalverteilung: Schließt mit einer Erkundung dieses statistischen Tools ab, das in der Robotik zum Umgang mit Unsicherheit und zur Datenmodellierung verwendet wird.

Xếp hạng sách điện tử này

Cho chúng tôi biết suy nghĩ của bạn.

Đọc thông tin

Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho AndroidiPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.

Tiếp tục bộ sách

Bởi Fouad Sabry

Sách điện tử tương tự