Dimensionsreduzierung: Fortschritte in der Datenverarbeitung für intelligente Systeme

· Robotikwissenschaft [German] പുസ്‌തകം, 26 · One Billion Knowledgeable
ഇ-ബുക്ക്
354
പേജുകൾ
യോഗ്യതയുണ്ട്
റേറ്റിംഗുകളും റിവ്യൂകളും പരിശോധിച്ചുറപ്പിച്ചതല്ല  കൂടുതലറിയുക

ഈ ഇ-ബുക്കിനെക്കുറിച്ച്

1: Dimensionsreduktion: Stellt das Konzept und die Notwendigkeit der Reduzierung der Komplexität hochdimensionaler Daten in der Robotik vor.

2: Hauptkomponentenanalyse: Erläutert PCA als wichtige lineare Technik zur Merkmalsextraktion und Datenkomprimierung.


3: Nichtlineare Dimensionsreduktion: Erforscht nichtlineare Techniken zur Erfassung komplexer Datenstrukturen in der Robotik.


4: Eigenface: Behandelt die Verwendung von Eigenfaces zur Gesichtserkennung in der Robotik und demonstriert eine reale Anwendung der Dimensionsreduktion.


5: Empirische orthogonale Funktionen: Beschreibt eine Methode zur Darstellung von Daten auf eine Weise, die wichtige Merkmale für Robotersysteme erfasst.


6: Semidefinite Einbettung: Stellt diese Technik zur Erhaltung von Datenbeziehungen bei gleichzeitiger Reduzierung der Dimensionalität vor, wodurch die Verarbeitung von Roboterdaten verbessert wird.


7: Lineare Diskriminanzanalyse: Erklärt, wie LDA bei Klassifizierungsaufgaben hilft, indem es sich auf die Klassentrennbarkeit in reduzierten Daten konzentriert.


8: Nichtnegative Matrixfaktorisierung: Beschreibt, wie NMF dabei hilft, teilebasierte Darstellungen aus Daten zu extrahieren, insbesondere für die Robotik.


9: Kernel-Hauptkomponentenanalyse: Erweitert PCA mit Kernelmethoden zur Verarbeitung nichtlinearer Daten, die für Robotiksysteme mit komplexen Eingaben von entscheidender Bedeutung sind.


10: Shogun (Toolbox): Hebt die Shogun-Toolbox für maschinelles Lernen hervor, die Methoden zur Dimensionsreduzierung für Robotikanwendungen enthält.


11: Spektrales Clustering: Behandelt diese Technik zum Clustering hochdimensionaler Daten, eine wesentliche Aufgabe bei der Wahrnehmung und dem Verständnis von Robotik.


12: Isomap: Bespricht Isomap, eine Methode zur nichtlinearen Dimensionsreduzierung, und ihre Auswirkungen auf die Verbesserung von Robotikmodellen.


13: Hauptkomponentenregression: Verbindet PCA mit Regression, um die Datendimensionalität zu reduzieren und prädiktive Modelle in der Robotik zu verbessern.


14: Multilineares Subspace-Lernen: Stellt diese fortschrittliche Methode zur Verarbeitung multidimensionaler Daten vor, die die Roboterleistung steigert.


15: Mlpy: Detaillierte Beschreibung der Mlpy-Bibliothek für maschinelles Lernen, die Tools zur Dimensionsreduzierung in Robotersystemen zeigt.


16: Diffusionskarte: Konzentriert sich auf die Diffusionskartentechnik zur Dimensionsreduzierung und ihre Anwendung in der Robotik.


17: Feature-Learning: Erforscht das Konzept des Feature-Learnings und seine Bedeutung für die Verbesserung der Dateninterpretation von Robotersystemen.


18: Kernel-Adaptivfilter: Erläutert diese Filtertechnik zur Anpassung von Modellen an dynamische Daten, wodurch die Entscheidungsfindung von Robotern in Echtzeit verbessert wird.


19: Zufallsprojektion: Bietet Einblicke, wie Zufallsprojektionstechniken die Dimensionsreduzierung für große Datensätze in der Robotik beschleunigen können.


20: Feature-Engineering: Stellt den Prozess des Entwerfens von Features vor, die Robotern helfen, ihre Umgebung besser zu verstehen und mit ihr zu interagieren.


21: Multivariate Normalverteilung: Schließt mit einer Erkundung dieses statistischen Tools ab, das in der Robotik zum Umgang mit Unsicherheit und zur Datenmodellierung verwendet wird.

ഈ ഇ-ബുക്ക് റേറ്റ് ചെയ്യുക

നിങ്ങളുടെ അഭിപ്രായം ഞങ്ങളെ അറിയിക്കുക.

വായനാ വിവരങ്ങൾ

സ്‌മാർട്ട്ഫോണുകളും ടാബ്‌ലെറ്റുകളും
Android, iPad/iPhone എന്നിവയ്ക്കായി Google Play ബുക്‌സ് ആപ്പ് ഇൻസ്‌റ്റാൾ ചെയ്യുക. ഇത് നിങ്ങളുടെ അക്കൗണ്ടുമായി സ്വയമേവ സമന്വയിപ്പിക്കപ്പെടുകയും, എവിടെ ആയിരുന്നാലും ഓൺലൈനിൽ അല്ലെങ്കിൽ ഓഫ്‌ലൈനിൽ വായിക്കാൻ നിങ്ങളെ അനുവദിക്കുകയും ചെയ്യുന്നു.
ലാപ്ടോപ്പുകളും കമ്പ്യൂട്ടറുകളും
Google Play-യിൽ നിന്ന് വാങ്ങിയിട്ടുള്ള ഓഡിയോ ബുക്കുകൾ കമ്പ്യൂട്ടറിന്‍റെ വെബ് ബ്രൗസർ ഉപയോഗിച്ചുകൊണ്ട് വായിക്കാവുന്നതാണ്.
ഇ-റീഡറുകളും മറ്റ് ഉപകരണങ്ങളും
Kobo ഇ-റീഡറുകൾ പോലുള്ള ഇ-ഇങ്ക് ഉപകരണങ്ങളിൽ വായിക്കാൻ ഒരു ഫയൽ ഡൗൺലോഡ് ചെയ്ത് അത് നിങ്ങളുടെ ഉപകരണത്തിലേക്ക് കൈമാറേണ്ടതുണ്ട്. പിന്തുണയുള്ള ഇ-റീഡറുകളിലേക്ക് ഫയലുകൾ കൈമാറാൻ, സഹായ കേന്ദ്രത്തിലുള്ള വിശദമായ നിർദ്ദേശങ്ങൾ ഫോളോ ചെയ്യുക.

സീരീസ് തുടരുക

Fouad Sabry എന്ന രചയിതാവിന്റെ കൂടുതൽ പുസ്‌തകങ്ങൾ

സമാനമായ ഇ-ബുക്കുകൾ