Dimensionsreduzierung: Fortschritte in der Datenverarbeitung für intelligente Systeme

· Robotikwissenschaft [German] 26-кітап · One Billion Knowledgeable
Электрондық кітап
354
бет
Жарамды
Рейтингілер мен пікірлер тексерілмеген. Толығырақ

Осы электрондық кітап туралы ақпарат

1: Dimensionsreduktion: Stellt das Konzept und die Notwendigkeit der Reduzierung der Komplexität hochdimensionaler Daten in der Robotik vor.

2: Hauptkomponentenanalyse: Erläutert PCA als wichtige lineare Technik zur Merkmalsextraktion und Datenkomprimierung.


3: Nichtlineare Dimensionsreduktion: Erforscht nichtlineare Techniken zur Erfassung komplexer Datenstrukturen in der Robotik.


4: Eigenface: Behandelt die Verwendung von Eigenfaces zur Gesichtserkennung in der Robotik und demonstriert eine reale Anwendung der Dimensionsreduktion.


5: Empirische orthogonale Funktionen: Beschreibt eine Methode zur Darstellung von Daten auf eine Weise, die wichtige Merkmale für Robotersysteme erfasst.


6: Semidefinite Einbettung: Stellt diese Technik zur Erhaltung von Datenbeziehungen bei gleichzeitiger Reduzierung der Dimensionalität vor, wodurch die Verarbeitung von Roboterdaten verbessert wird.


7: Lineare Diskriminanzanalyse: Erklärt, wie LDA bei Klassifizierungsaufgaben hilft, indem es sich auf die Klassentrennbarkeit in reduzierten Daten konzentriert.


8: Nichtnegative Matrixfaktorisierung: Beschreibt, wie NMF dabei hilft, teilebasierte Darstellungen aus Daten zu extrahieren, insbesondere für die Robotik.


9: Kernel-Hauptkomponentenanalyse: Erweitert PCA mit Kernelmethoden zur Verarbeitung nichtlinearer Daten, die für Robotiksysteme mit komplexen Eingaben von entscheidender Bedeutung sind.


10: Shogun (Toolbox): Hebt die Shogun-Toolbox für maschinelles Lernen hervor, die Methoden zur Dimensionsreduzierung für Robotikanwendungen enthält.


11: Spektrales Clustering: Behandelt diese Technik zum Clustering hochdimensionaler Daten, eine wesentliche Aufgabe bei der Wahrnehmung und dem Verständnis von Robotik.


12: Isomap: Bespricht Isomap, eine Methode zur nichtlinearen Dimensionsreduzierung, und ihre Auswirkungen auf die Verbesserung von Robotikmodellen.


13: Hauptkomponentenregression: Verbindet PCA mit Regression, um die Datendimensionalität zu reduzieren und prädiktive Modelle in der Robotik zu verbessern.


14: Multilineares Subspace-Lernen: Stellt diese fortschrittliche Methode zur Verarbeitung multidimensionaler Daten vor, die die Roboterleistung steigert.


15: Mlpy: Detaillierte Beschreibung der Mlpy-Bibliothek für maschinelles Lernen, die Tools zur Dimensionsreduzierung in Robotersystemen zeigt.


16: Diffusionskarte: Konzentriert sich auf die Diffusionskartentechnik zur Dimensionsreduzierung und ihre Anwendung in der Robotik.


17: Feature-Learning: Erforscht das Konzept des Feature-Learnings und seine Bedeutung für die Verbesserung der Dateninterpretation von Robotersystemen.


18: Kernel-Adaptivfilter: Erläutert diese Filtertechnik zur Anpassung von Modellen an dynamische Daten, wodurch die Entscheidungsfindung von Robotern in Echtzeit verbessert wird.


19: Zufallsprojektion: Bietet Einblicke, wie Zufallsprojektionstechniken die Dimensionsreduzierung für große Datensätze in der Robotik beschleunigen können.


20: Feature-Engineering: Stellt den Prozess des Entwerfens von Features vor, die Robotern helfen, ihre Umgebung besser zu verstehen und mit ihr zu interagieren.


21: Multivariate Normalverteilung: Schließt mit einer Erkundung dieses statistischen Tools ab, das in der Robotik zum Umgang mit Unsicherheit und zur Datenmodellierung verwendet wird.

Осы электрондық кітапты бағалаңыз.

Пікіріңізбен бөлісіңіз.

Ақпаратты оқу

Смартфондар мен планшеттер
Android және iPad/iPhone үшін Google Play Books қолданбасын орнатыңыз. Ол аккаунтпен автоматты түрде синхрондалады және қайда болсаңыз да, онлайн не офлайн режимде оқуға мүмкіндік береді.
Ноутбуктар мен компьютерлер
Google Play дүкенінде сатып алған аудиокітаптарды компьютердің браузерінде тыңдауыңызға болады.
eReader және басқа құрылғылар
Kobo eReader сияқты E-ink технологиясымен жұмыс істейтін құрылғылардан оқу үшін файлды жүктеп, оны құрылғыға жіберу керек. Қолдау көрсетілетін eReader құрылғысына файл жіберу үшін Анықтама орталығының нұсқауларын орындаңыз.

Кітаптар сериясын жалғастыру

Fouad Sabry жазған басқа да кітаптар

Ұқсас электрондық кітаптар