Differential- und Integralrechnung III: Integrationstheorie · Kurven- und Flächenintegrale

·
· Heidelberger Taschenbücher 第 43 冊 · Springer-Verlag
電子書
190
評分和評論未經驗證  瞭解詳情

關於本電子書

Der dritte und letzte Teil unserer Darstellung der Differential und Integralrechnung ist der Integrationstheorie im. Rn gewidmet. Er ist gedacht für Mathematik- und Physikstudenten des dritten und vierten Semesters. Zum Verständnis wird der Stoff von Band I und ein kleiner Teil des Stoffes von Band II vorausgesetzt. 1. Wir beginnen (in Kap. I) mit dem Lebesgueschen Integral im Rn. Anstelle des sehr speziellen euklidischen Maßes legen wir sogleich allgemeine Radonsche Maße zugrunde und beziehen auf diese Weise das Lebesgue-Stieltjes-Integral und die Integration über das Dirac sche b-Maß in unsere Theorie ein. Um den Umweg über das Rie mannsche Integral zu vermeiden, führen wir Radonsche Maße als (stetige) Linearformen auf einem Vektorraum von Treppenfunk tionen ein, also nicht, wie sonst üblich, auf dem Raum der stetigen Funktionen mit kompaktem Träger. Natürlich gelangt man auch hierdurch zum üblichen Integralbegriff. in § 2 ist wieder so gefaßt, daß sie Die Definition des Integrals sich unverändert auf allgemeinste Fälle überträgt, z. B. auf Funk tionen mit Werten in einem topologischen Vektorraum V. Selbst verständlich muß V ein lokal-konvexer Hausdorff-Raum sein, wenn man sinnvolle Ergebnisse erwarten will. Iq diesem Fall werden Funk tionsbereiche folgendermaßen erklärt: Es sei W c Rn X V eine offene Menge, so daß für jeden Punkt ~ERn der Durchschnitt ({d X V) n W nichtleer und konvex ist; ferner gebe es eine kompakte Menge KclR,11 mit (Rn - K) X {O} c W.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。