Der Quotienten-Differenzen-Algorithmus

· Springer-Verlag
電子書
77
評分和評論未經驗證  瞭解詳情

關於本電子書

Im Anschluss an eine praktische Anwendung des BO-Algorithmus (Biortho gonalisierungs-Algorithmus von C. LANCZOS [4], [5]1) machte mich Herr Prof. E. STIEFEL, ETH, auf das Problem aufmerksam, die höheren Eigenwerte direkt aus den sogenannten Schwarzsehen Konstanten zu bestimmen, das heisst ohne den Umweg über die Orthogonalisierung. Auf diese Anregung hin entwickelte der Verfasser einen Algorithmus, der die gestellte Aufgabe löst. Allerdings gab bereits A. C. AITKEN [1] eine Methode an, welche haupt sächlich zur Auflösung algebraischer Gleichungen gedacht war, aber auch die Bestimmung höherer Eigenwerte aus Schwarzsehen Konstanten gestattet. 2 Ferner stammt von C. LANCZOS ein Algorithmus ) zur Bestimmung des charak teristischen Polynoms einer Matrix aus Schwarzsehen Konstanten. Überdies entwickelte J. HADAMARD in seiner Dissertation [2] eine Methode zur Bestim mung der Pole einer durch ihre Potenzreihe gegebenen Funktion. Er hat damit, wie § 1 zeigen wird, auch das eingangs erwähnte Eigenwertproblem gelöst. Wenn hier das schon gelöste Problem nochmals aufgegriffen wird, so geschieht dies deshalb, weil der entwickelte Algorithmus eine Reihe von weiteren An wendungen gestattet und insbesondere auch wertvolle Beziehungen zur Ketten bruchtheorie vermittelt3). Die Arbeit gliedert sich in drei Kapitel, von denen sich die Kapitel I und n mit Theorie und Anwendungen befassen, während III eine Ausdehnung des QD-Algorithmus auf Vektoren behandelt. Schliesslich folgt ein Anhang über verwandte Methoden (insbesondere die LR-Transformation). Die Kapitel I, n, In sind einzeln bereits in der ZAMP erschienen'), doch ist zu beachten, dass I und n zum Teil erhebliche Veränderungen erfahren haben.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。