Der Quotienten-Differenzen-Algorithmus

· Springer-Verlag
eBook
77
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

Im Anschluss an eine praktische Anwendung des BO-Algorithmus (Biortho gonalisierungs-Algorithmus von C. LANCZOS [4], [5]1) machte mich Herr Prof. E. STIEFEL, ETH, auf das Problem aufmerksam, die höheren Eigenwerte direkt aus den sogenannten Schwarzsehen Konstanten zu bestimmen, das heisst ohne den Umweg über die Orthogonalisierung. Auf diese Anregung hin entwickelte der Verfasser einen Algorithmus, der die gestellte Aufgabe löst. Allerdings gab bereits A. C. AITKEN [1] eine Methode an, welche haupt sächlich zur Auflösung algebraischer Gleichungen gedacht war, aber auch die Bestimmung höherer Eigenwerte aus Schwarzsehen Konstanten gestattet. 2 Ferner stammt von C. LANCZOS ein Algorithmus ) zur Bestimmung des charak teristischen Polynoms einer Matrix aus Schwarzsehen Konstanten. Überdies entwickelte J. HADAMARD in seiner Dissertation [2] eine Methode zur Bestim mung der Pole einer durch ihre Potenzreihe gegebenen Funktion. Er hat damit, wie § 1 zeigen wird, auch das eingangs erwähnte Eigenwertproblem gelöst. Wenn hier das schon gelöste Problem nochmals aufgegriffen wird, so geschieht dies deshalb, weil der entwickelte Algorithmus eine Reihe von weiteren An wendungen gestattet und insbesondere auch wertvolle Beziehungen zur Ketten bruchtheorie vermittelt3). Die Arbeit gliedert sich in drei Kapitel, von denen sich die Kapitel I und n mit Theorie und Anwendungen befassen, während III eine Ausdehnung des QD-Algorithmus auf Vektoren behandelt. Schliesslich folgt ein Anhang über verwandte Methoden (insbesondere die LR-Transformation). Die Kapitel I, n, In sind einzeln bereits in der ZAMP erschienen'), doch ist zu beachten, dass I und n zum Teil erhebliche Veränderungen erfahren haben.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.