Degenerate Elliptic Equations

· Mathematics and Its Applications Libro 258 · Springer Science & Business Media
Libro electrónico
436
Páxinas
As valoracións e as recensións non están verificadas  Máis información

Acerca deste libro electrónico

0.1 The partial differential equation (1) (Au)(x) = L aa(x)(Dau)(x) = f(x) m lal9 is called elliptic on a set G, provided that the principal symbol a2m(X, €) = L aa(x)€a lal=2m of the operator A is invertible on G X (~n \ 0); A is called elliptic on G, too. This definition works for systems of equations, for classical pseudo differential operators ("pdo), and for operators on a manifold n. Let us recall some facts concerning elliptic operators. 1 If n is closed, then for any s E ~, is Fredholm and the following a priori estimate holds (2) 1 2 Introduction If m> 0 and A : C=(O; C') -+ L (0; C') is formally self - adjoint 2 with respect to a smooth positive density, then the closure Ao of A is a self - adjoint operator with discrete spectrum and for the distribu tion functions of the positive and negative eigenvalues (counted with multiplicity) of Ao one has the following Weyl formula: as t -+ 00, (3) n 2m = t / II N"(1,a2m(x, e))dxde T·O\O (on the right hand side, N"(t, a2m(x, e))are the distribution functions of the matrix a2m(X, e) : C' -+ CU)

Valora este libro electrónico

Dános a túa opinión.

Información de lectura

Smartphones e tabletas
Instala a aplicación Google Play Libros para Android e iPad/iPhone. Sincronízase automaticamente coa túa conta e permíteche ler contido en liña ou sen conexión desde calquera lugar.
Portátiles e ordenadores de escritorio
Podes escoitar os audiolibros comprados en Google Play a través do navegador web do ordenador.
Lectores de libros electrónicos e outros dispositivos
Para ler contido en dispositivos de tinta electrónica, como os lectores de libros electrónicos Kobo, é necesario descargar un ficheiro e transferilo ao dispositivo. Sigue as instrucións detalladas do Centro de Axuda para transferir ficheiros a lectores electrónicos admitidos.