Deep Learning: A Practitioner's Approach

┬╖ "O'Reilly Media, Inc."
рдЗ-рдкреБрд╕реНрддрдХ
532
рдкреГрд╖реНрдард╣рд░реВ
рдпреЛрдЧреНрдп
рд░реЗрдЯрд┐рдЩ рд░ рд░рд┐рднреНрдпреВрд╣рд░реВрдХреЛ рдкреБрд╖реНрдЯрд┐ рдЧрд░рд┐рдПрдХреЛ рд╣реБрдБрджреИрди ┬ардердк рдЬрд╛рдиреНрдиреБрд╣реЛрд╕реН

рдпреЛ рдЗ-рдкреБрд╕реНрддрдХрдХрд╛ рдмрд╛рд░реЗрдорд╛

Although interest in machine learning has reached a high point, lofty expectations often scuttle projects before they get very far. How can machine learningтАФespecially deep neural networksтАФmake a real difference in your organization? This hands-on guide not only provides the most practical information available on the subject, but also helps you get started building efficient deep learning networks.

Authors Adam Gibson and Josh Patterson provide theory on deep learning before introducing their open-source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, youтАЩll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J.

  • Dive into machine learning concepts in general, as well as deep learning in particular
  • Understand how deep networks evolved from neural network fundamentals
  • Explore the major deep network architectures, including Convolutional and Recurrent
  • Learn how to map specific deep networks to the right problem
  • Walk through the fundamentals of tuning general neural networks and specific deep network architectures
  • Use vectorization techniques for different data types with DataVec, DL4JтАЩs workflow tool
  • Learn how to use DL4J natively on Spark and Hadoop

рд▓реЗрдЦрдХрдХреЛ рдмрд╛рд░реЗрдорд╛

Josh Patterson is CEO of Patterson Consulting, a solution integrator at the intersection of big data and applied machine learning. In this role, he brings his unique perspective blending a decade of big data experience and wide-ranging deep learning experience to Fortune 500 projects. At the Tennessee Valley Authority (TVA), Josh drove the integration of Apache Hadoop for large-scale data storage and processing of smart grid phasor measurement unit (PMU) data. Post-TVA, Josh was a principal solutions architect for a young Hadoop startup named Cloudera (CLDR), as employee 34. After leaving Cloudera, Josh co-founded the Deeplearning4j project and co-wrote Deep Learning: A Practitioner's Approach (O'Reilly Media). Josh was also the VP of Field Engineering for Skymind.

Adam Gibson is a deep┬н-learning specialist based in San Francisco who works with Fortune 500 companies, hedge funds, PR firms and startup accelerators to create their machine-┬нlearning projects. Adam has a strong track record helping companies handle and interpret big real┬нtime data. Adam has been a computer nerd since he was 13, and actively contributes to the open┬н-source community through deeplearning4j.org.

рдпреЛ рдЗ-рдкреБрд╕реНрддрдХрдХреЛ рдореВрд▓реНрдпрд╛рдЩреНрдХрди рдЧрд░реНрдиреБрд╣реЛрд╕реН

рд╣рд╛рдореАрд▓рд╛рдИ рдЖрдлреНрдиреЛ рдзрд╛рд░рдгрд╛ рдмрддрд╛рдЙрдиреБрд╣реЛрд╕реНред

рдЬрд╛рдирдХрд╛рд░реА рдкрдвреНрджреИ

рд╕реНрдорд╛рд░реНрдЯрдлреЛрди рддрдерд╛ рдЯреНрдпрд╛рдмрд▓реЗрдЯрд╣рд░реВ
Android рд░ iPad/iPhone рдХрд╛ рд▓рд╛рдЧрд┐┬аGoogle Play рдХрд┐рддрд╛рдм рдПрдк рдХреЛ рдЗрдиреНрд╕реНрдЯрд▓ рдЧрд░реНрдиреБрд╣реЛрд╕реНред рдпреЛ рддрдкрд╛рдИрдВрдХреЛ рдЦрд╛рддрд╛рд╕реЕрдВрдЧ рд╕реНрд╡рддрдГ рд╕рд┐рдВрдХ рд╣реБрдиреНрдЫ рд░ рддрдкрд╛рдИрдВ рдЕрдирд▓рд╛рдЗрди рд╡рд╛ рдЕрдлрд▓рд╛рдЗрди рдЬрд╣рд╛рдБ рднрдП рдкрдирд┐┬ардЕрдзреНрдпрдпрди рдЧрд░реНрди рджрд┐рдиреНрдЫред
рд▓реНрдпрд╛рдкрдЯрдк рддрдерд╛ рдХрдореНрдкреНрдпреБрдЯрд░рд╣рд░реВ
рддрдкрд╛рдИрдВ Google Play рдорд╛ рдЦрд░рд┐рдж рдЧрд░рд┐рдПрдХреЛ рдЕрдбрд┐рдпреЛрдмреБрдХ рдЖрдлреНрдиреЛ рдХрдореНрдкреНрдпреБрдЯрд░рдХреЛ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЬрд░ рдкреНрд░рдпреЛрдЧ рдЧрд░реЗрд░ рд╕реБрдиреНрди рд╕рдХреНрдиреБрд╣реБрдиреНрдЫред
eReaders рд░ рдЕрдиреНрдп рдЙрдкрдХрд░рдгрд╣рд░реВ
Kobo eReaders рдЬрд╕реНрддрд╛ e-ink рдбрд┐рднрд╛рдЗрд╕рд╣рд░реВрдорд╛ рдлрд╛рдЗрд▓ рдкрдвреНрди рддрдкрд╛рдИрдВрд▓реЗ рдлрд╛рдЗрд▓ рдбрд╛рдЙрдирд▓реЛрдб рдЧрд░реЗрд░ рдЙрдХреНрдд рдлрд╛рдЗрд▓ рдЖрдлреНрдиреЛ рдбрд┐рднрд╛рдЗрд╕рдорд╛ рдЯреНрд░рд╛рдиреНрд╕реНрдлрд░ рдЧрд░реНрдиреБ рдкрд░реНрдиреЗ рд╣реБрдиреНрдЫред рддреА рдлрд╛рдЗрд▓рд╣рд░реВ рдкрдвреНрди рдорд┐рд▓реНрдиреЗ рдЗрдмреБрдХ рд░рд┐рдбрд░рд╣рд░реВрдорд╛ рддреА рдлрд╛рдЗрд▓рд╣рд░реВ рдЯреНрд░рд╛рдиреНрд╕реНрдлрд░ рдЧрд░реНрдиреЗрд╕рдореНрдмрдиреНрдзреА рд╡рд┐рд╕реНрддреГрдд рдирд┐рд░реНрджреЗрд╢рдирд╣рд░реВ рдкреНрд░рд╛рдкреНрдд рдЧрд░реНрди рдорджреНрджрдд рдХреЗрдиреНрджреНрд░ рдорд╛ рдЬрд╛рдиреБрд╣реЛрд╕реНред