Continuous Martingales and Brownian Motion

·
· Grundlehren der mathematischen Wissenschaften 293. grāmata · Springer Science & Business Media
E-grāmata
536
Lappuses
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

This book focuses on the probabilistic theory ofBrownian motion. This is a good topic to center a discussion around because Brownian motion is in the intersec tioll of many fundamental classes of processes. It is a continuous martingale, a Gaussian process, a Markov process or more specifically a process with in dependent increments; it can actually be defined, up to simple transformations, as the real-valued, centered process with independent increments and continuous paths. It is therefore no surprise that a vast array of techniques may be success fully applied to its study and we, consequently, chose to organize the book in the following way. After a first chapter where Brownian motion is introduced, each of the following ones is devoted to a new technique or notion and to some of its applications to Brownian motion. Among these techniques, two are of para mount importance: stochastic calculus, the use ofwhich pervades the whole book and the powerful excursion theory, both of which are introduced in a self contained fashion and with a minimum of apparatus. They have made much easier the proofs of many results found in the epoch-making book of Itö and McKean: Diffusion Processes and their Sampie Paths, Springer (1965).

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.