Congruences for L-Functions

ยท
ยท Mathematics and Its Applications 511๊ถŒ ยท Springer Science & Business Media
eBook
256
ํŽ˜์ด์ง€
๊ฒ€์ฆ๋˜์ง€ ์•Š์€ ํ‰์ ๊ณผ ๋ฆฌ๋ทฐ์ž…๋‹ˆ๋‹ค. ย ์ž์„ธํžˆ ์•Œ์•„๋ณด๊ธฐ

eBook ์ •๋ณด

In [Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2ยท . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o

์ด eBook ํ‰๊ฐ€

์˜๊ฒฌ์„ ์•Œ๋ ค์ฃผ์„ธ์š”.

์ฝ๊ธฐ ์ •๋ณด

์Šค๋งˆํŠธํฐ ๋ฐ ํƒœ๋ธ”๋ฆฟ
Android ๋ฐ iPad/iPhone์šฉ Google Play ๋ถ ์•ฑ์„ ์„ค์น˜ํ•˜์„ธ์š”. ๊ณ„์ •๊ณผ ์ž๋™์œผ๋กœ ๋™๊ธฐํ™”๋˜์–ด ์–ด๋””์„œ๋‚˜ ์˜จ๋ผ์ธ ๋˜๋Š” ์˜คํ”„๋ผ์ธ์œผ๋กœ ์ฑ…์„ ์ฝ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
๋…ธํŠธ๋ถ ๋ฐ ์ปดํ“จํ„ฐ
์ปดํ“จํ„ฐ์˜ ์›น๋ธŒ๋ผ์šฐ์ €๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ Google Play์—์„œ ๊ตฌ๋งคํ•œ ์˜ค๋””์˜ค๋ถ์„ ๋“ค์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
eReader ๋ฐ ๊ธฐํƒ€ ๊ธฐ๊ธฐ
Kobo eReader ๋“ฑ์˜ eBook ๋ฆฌ๋”๊ธฐ์—์„œ ์ฝ์œผ๋ ค๋ฉด ํŒŒ์ผ์„ ๋‹ค์šด๋กœ๋“œํ•˜์—ฌ ๊ธฐ๊ธฐ๋กœ ์ „์†กํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ง€์›๋˜๋Š” eBook ๋ฆฌ๋”๊ธฐ๋กœ ํŒŒ์ผ์„ ์ „์†กํ•˜๋ ค๋ฉด ๊ณ ๊ฐ์„ผํ„ฐ์—์„œ ์ž์„ธํ•œ ์•ˆ๋‚ด๋ฅผ ๋”ฐ๋ฅด์„ธ์š”.