Conformal Invariance and Critical Phenomena

┬╖ Springer Science & Business Media
рдЗ-рдкреБрд╕реНрддрдХ
418
рдкреГрд╖реНрдард╣рд░реВ
рд░реЗрдЯрд┐рдЩ рд░ рд░рд┐рднреНрдпреВрд╣рд░реВрдХреЛ рдкреБрд╖реНрдЯрд┐ рдЧрд░рд┐рдПрдХреЛ рд╣реБрдБрджреИрди ┬ардердк рдЬрд╛рдиреНрдиреБрд╣реЛрд╕реН

рдпреЛ рдЗ-рдкреБрд╕реНрддрдХрдХрд╛ рдмрд╛рд░реЗрдорд╛

Critical phenomena arise in a wide variety of physical systems. Classi cal examples are the liquid-vapour critical point or the paramagnetic ferromagnetic transition. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and fully developed tur bulence and may even extend to the quark-gluon plasma and the early uni verse as a whole. Early theoretical investigators tried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations, culminating in Landau's general theory of critical phenomena. Nowadays, it is understood that the common ground for all these phenomena lies in the presence of strong fluctuations of infinitely many coupled variables. This was made explicit first through the exact solution of the two-dimensional Ising model by Onsager. Systematic subsequent developments have been leading to the scaling theories of critical phenomena and the renormalization group which allow a precise description of the close neighborhood of the critical point, often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is emphasized today. This can be briefly summarized by saying that at a critical point a system is scale invariant. In addition, conformal invaTiance permits also a non-uniform, local rescal ing, provided only that angles remain unchanged.

рдпреЛ рдЗ-рдкреБрд╕реНрддрдХрдХреЛ рдореВрд▓реНрдпрд╛рдЩреНрдХрди рдЧрд░реНрдиреБрд╣реЛрд╕реН

рд╣рд╛рдореАрд▓рд╛рдИ рдЖрдлреНрдиреЛ рдзрд╛рд░рдгрд╛ рдмрддрд╛рдЙрдиреБрд╣реЛрд╕реНред

рдЬрд╛рдирдХрд╛рд░реА рдкрдвреНрджреИ

рд╕реНрдорд╛рд░реНрдЯрдлреЛрди рддрдерд╛ рдЯреНрдпрд╛рдмрд▓реЗрдЯрд╣рд░реВ
Android рд░ iPad/iPhone рдХрд╛ рд▓рд╛рдЧрд┐┬аGoogle Play рдХрд┐рддрд╛рдм рдПрдк рдХреЛ рдЗрдиреНрд╕реНрдЯрд▓ рдЧрд░реНрдиреБрд╣реЛрд╕реНред рдпреЛ рддрдкрд╛рдИрдВрдХреЛ рдЦрд╛рддрд╛рд╕реЕрдВрдЧ рд╕реНрд╡рддрдГ рд╕рд┐рдВрдХ рд╣реБрдиреНрдЫ рд░ рддрдкрд╛рдИрдВ рдЕрдирд▓рд╛рдЗрди рд╡рд╛ рдЕрдлрд▓рд╛рдЗрди рдЬрд╣рд╛рдБ рднрдП рдкрдирд┐┬ардЕрдзреНрдпрдпрди рдЧрд░реНрди рджрд┐рдиреНрдЫред
рд▓реНрдпрд╛рдкрдЯрдк рддрдерд╛ рдХрдореНрдкреНрдпреБрдЯрд░рд╣рд░реВ
рддрдкрд╛рдИрдВ Google Play рдорд╛ рдЦрд░рд┐рдж рдЧрд░рд┐рдПрдХреЛ рдЕрдбрд┐рдпреЛрдмреБрдХ рдЖрдлреНрдиреЛ рдХрдореНрдкреНрдпреБрдЯрд░рдХреЛ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЬрд░ рдкреНрд░рдпреЛрдЧ рдЧрд░реЗрд░ рд╕реБрдиреНрди рд╕рдХреНрдиреБрд╣реБрдиреНрдЫред
eReaders рд░ рдЕрдиреНрдп рдЙрдкрдХрд░рдгрд╣рд░реВ
Kobo eReaders рдЬрд╕реНрддрд╛ e-ink рдбрд┐рднрд╛рдЗрд╕рд╣рд░реВрдорд╛ рдлрд╛рдЗрд▓ рдкрдвреНрди рддрдкрд╛рдИрдВрд▓реЗ рдлрд╛рдЗрд▓ рдбрд╛рдЙрдирд▓реЛрдб рдЧрд░реЗрд░ рдЙрдХреНрдд рдлрд╛рдЗрд▓ рдЖрдлреНрдиреЛ рдбрд┐рднрд╛рдЗрд╕рдорд╛ рдЯреНрд░рд╛рдиреНрд╕реНрдлрд░ рдЧрд░реНрдиреБ рдкрд░реНрдиреЗ рд╣реБрдиреНрдЫред рддреА рдлрд╛рдЗрд▓рд╣рд░реВ рдкрдвреНрди рдорд┐рд▓реНрдиреЗ рдЗрдмреБрдХ рд░рд┐рдбрд░рд╣рд░реВрдорд╛ рддреА рдлрд╛рдЗрд▓рд╣рд░реВ рдЯреНрд░рд╛рдиреНрд╕реНрдлрд░ рдЧрд░реНрдиреЗрд╕рдореНрдмрдиреНрдзреА рд╡рд┐рд╕реНрддреГрдд рдирд┐рд░реНрджреЗрд╢рдирд╣рд░реВ рдкреНрд░рд╛рдкреНрдд рдЧрд░реНрди рдорджреНрджрдд рдХреЗрдиреНрджреНрд░ рдорд╛ рдЬрд╛рдиреБрд╣реЛрд╕реНред