Computational Complexity: A Quantitative Perspective

· North-Holland Mathematics Studies 196. књига · Elsevier
Π•-књига
352
Π‘Ρ‚Ρ€Π°Π½ΠΈΡ†Π°
Π˜ΡΠΏΡƒΡšΠ°Π²Π° условС
ΠžΡ†Π΅Π½Π΅ ΠΈ Ρ€Π΅Ρ†Π΅Π½Π·ΠΈΡ˜Π΅ нису Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Π½Π΅ Β Π‘Π°Π·Π½Π°Ρ˜Ρ‚Π΅ вишС

О овој С-књизи

There has been a common perception that computational complexity is a theory of "bad news" because its most typical results assert that various real-world and innocent-looking tasks are infeasible. In fact, "bad news" is a relative term, and, indeed, in some situations (e.g., in cryptography), we want an adversary to not be able to perform a certain task. However, a "bad news" result does not automatically become useful in such a scenario. For this to happen, its hardness features have to be quantitatively evaluated and shown to manifest extensively.The book undertakes a quantitative analysis of some of the major results in complexity that regard either classes of problems or individual concrete problems. The size of some important classes are studied using resource-bounded topological and measure-theoretical tools. In the case of individual problems, the book studies relevant quantitative attributes such as approximation properties or the number of hard inputs at each length.One chapter is dedicated to abstract complexity theory, an older field which, however, deserves attention because it lays out the foundations of complexity. The other chapters, on the other hand, focus on recent and important developments in complexity. The book presents in a fairly detailed manner concepts that have been at the centre of the main research lines in complexity in the last decade or so, such as: average-complexity, quantum computation, hardness amplification, resource-bounded measure, the relation between one-way functions and pseudo-random generators, the relation between hard predicates and pseudo-random generators, extractors, derandomization of bounded-error probabilistic algorithms, probabilistically checkable proofs, non-approximability of optimization problems, and others.The book should appeal to graduate computer science students, and to researchers who have an interest in computer science theory and need a good understanding of computational complexity, e.g., researchers in algorithms, AI, logic, and other disciplines.Β·Emphasis is on relevant quantitative attributes of important results in complexity.Β·Coverage is self-contained and accessible to a wide audience.Β·Large range of important topics including: derandomization techniques, non-approximability of optimization problems, average-case complexity, quantum computation, one-way functions and pseudo-random generators, resource-bounded measure and topology.

ΠžΡ†Π΅Π½ΠΈΡ‚Π΅ ΠΎΠ²Ρƒ Π΅-ΠΊΡšΠΈΠ³Ρƒ

ΠˆΠ°Π²ΠΈΡ‚Π΅ Π½Π°ΠΌ својС ΠΌΠΈΡˆΡ™Π΅ΡšΠ΅.

Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ˜Π΅ ΠΎ Ρ‡ΠΈΡ‚Π°ΡšΡƒ

ΠŸΠ°ΠΌΠ΅Ρ‚Π½ΠΈ Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½ΠΈ ΠΈ Ρ‚Π°Π±Π»Π΅Ρ‚ΠΈ
Π˜Π½ΡΡ‚Π°Π»ΠΈΡ€Π°Ρ˜Ρ‚Π΅ Π°ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΡ˜Ρƒ Google Play књигС Π·Π° Android ΠΈ iPad/iPhone. Аутоматски сС ΡΠΈΠ½Ρ…Ρ€ΠΎΠ½ΠΈΠ·ΡƒΡ˜Π΅ са Π½Π°Π»ΠΎΠ³ΠΎΠΌ ΠΈ ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° Π²Π°ΠΌ Π΄Π° Ρ‡ΠΈΡ‚Π°Ρ‚Π΅ онлајн ΠΈ ΠΎΡ„Π»Π°Ρ˜Π½ Π³Π΄Π΅ Π³ΠΎΠ΄ Π΄Π° сС Π½Π°Π»Π°Π·ΠΈΡ‚Π΅.
Π›Π°ΠΏΡ‚ΠΎΠΏΠΎΠ²ΠΈ ΠΈ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€ΠΈ
ΠœΠΎΠΆΠ΅Ρ‚Π΅ Π΄Π° ΡΠ»ΡƒΡˆΠ°Ρ‚Π΅ Π°ΡƒΠ΄ΠΈΠΎ-књигС ΠΊΡƒΠΏΡ™Π΅Π½Π΅ Π½Π° Google Play-Ρƒ ΠΏΠΎΠΌΠΎΡ›Ρƒ Π²Π΅Π±-ΠΏΡ€Π΅Π³Π»Π΅Π΄Π°Ρ‡Π° Π½Π° Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Ρƒ.
Π•-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈ ΡƒΡ€Π΅Ρ’Π°Ρ˜ΠΈ
Π”Π° бистС Ρ‡ΠΈΡ‚Π°Π»ΠΈ Π½Π° ΡƒΡ€Π΅Ρ’Π°Ρ˜ΠΈΠΌΠ° којС користС Π΅-мастило, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ су Kobo Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡ΠΈ, Ρ‚Ρ€Π΅Π±Π° Π΄Π° ΠΏΡ€Π΅ΡƒΠ·ΠΌΠ΅Ρ‚Π΅ Ρ„Π°Ρ˜Π» ΠΈ прСнСсСтС Π³Π° Π½Π° ΡƒΡ€Π΅Ρ’Π°Ρ˜. ΠŸΡ€Π°Ρ‚ΠΈΡ‚Π΅ Π΄Π΅Ρ‚Π°Ρ™Π½Π° упутства ΠΈΠ· Ρ†Π΅Π½Ρ‚Ρ€Π° Π·Π° ΠΏΠΎΠΌΠΎΡ› Π΄Π° бистС ΠΏΡ€Π΅Π½Π΅Π»ΠΈ Ρ„Π°Ρ˜Π»ΠΎΠ²Π΅ Ρƒ ΠΏΠΎΠ΄Ρ€ΠΆΠ°Π½Π΅ Π΅-Ρ‡ΠΈΡ‚Π°Ρ‡Π΅.

НаставитС Π΄Π° Ρ‡ΠΈΡ‚Π°Ρ‚Π΅ ΡΠ΅Ρ€ΠΈΡ˜Π°Π»

Π‘Π»ΠΈΡ‡Π½Π΅ Π΅-књигС