Coarse Geometry of Topological Groups

· Cambridge Tracts in Mathematics Kitabu cha 223 · Cambridge University Press
Kitabu pepe
309
Kurasa
Ukadiriaji na maoni hayajahakikishwa  Pata Maelezo Zaidi

Kuhusu kitabu pepe hiki

This book provides a general framework for doing geometric group theory for many non-locally-compact topological transformation groups that arise in mathematical practice, including homeomorphism and diffeomorphism groups of manifolds, isometry groups of separable metric spaces and automorphism groups of countable structures. Using Roe's framework of coarse structures and spaces, the author defines a natural coarse geometric structure on all topological groups. This structure is accessible to investigation, especially in the case of Polish groups, and often has an explicit description, generalising well-known structures in familiar cases including finitely generated discrete groups, compactly generated locally compact groups and Banach spaces. In most cases, the coarse geometric structure is metrisable and may even be refined to a canonical quasimetric structure on the group. The book contains many worked examples and sufficient introductory material to be accessible to beginning graduate students. An appendix outlines several open problems in this young and rich theory.

Kuhusu mwandishi

Christian Rosendal is Professor of Mathematics at University of Illinois at Chicago. He received a Simons Fellowship in Mathematics in 2012 and is Fellow of the American Mathematical Society.

Kadiria kitabu pepe hiki

Tupe maoni yako.

Kusoma maelezo

Simu mahiri na kompyuta vibao
Sakinisha programu ya Vitabu vya Google Play kwa ajili ya Android na iPad au iPhone. Itasawazishwa kiotomatiki kwenye akaunti yako na kukuruhusu usome vitabu mtandaoni au nje ya mtandao popote ulipo.
Kompyuta za kupakata na kompyuta
Unaweza kusikiliza vitabu vilivyonunuliwa kwenye Google Play wakati unatumia kivinjari cha kompyuta yako.
Visomaji pepe na vifaa vingine
Ili usome kwenye vifaa vya wino pepe kama vile visomaji vya vitabu pepe vya Kobo, utahitaji kupakua faili kisha ulihamishie kwenye kifaa chako. Fuatilia maagizo ya kina ya Kituo cha Usaidizi ili uhamishe faili kwenye visomaji vya vitabu pepe vinavyotumika.